簡易檢索 / 詳目顯示

研究生: 陳維鈞
Chen Wei-Chun
論文名稱: 不同維度氧化鋅材料之製備與特性分析
Preparation and characterization of diverse-dimensional ZnO material
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 溶膠凝膠法氧化鋅奈米線氧化鋅薄膜氧化鋅粉末汽-液-固相生長機制
英文關鍵詞: sol-gel method, ZnO nanowires, ZnO thin films, ZnO powder, vapor-liquid-solid mechanism
論文種類: 學術論文
相關次數: 點閱:372下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅為一寬能帶間隙Ⅱ-Ⅵ族半導體材料,並且在不同維度具備非常吸引人的特性。例如在室溫時,光波長範圍0.4~2 um有很高的光穿透性、高壓電性、擁有較大的電光係數、高發光效率及高激發(態)束縛能。
    本研究中透過汽-液-固相(VLS)生長機制,並使用金與氧化鋅在基板上當作催化劑在900oC條件下成長氧化鋅奈米線;另外使用溶膠凝膠法中的旋轉塗佈法製備氧化鋅薄膜與氧化鋅粉末,其中氧化鋅薄膜主要係沉積於矽晶圓(100)及康寧玻璃7059基板上。結構分析以X-ray、SEM、AFM為主,光學特性分析則使用UV-VIS分光光譜儀及光激發螢光光譜儀。
    研究結果顯示,溫度、時間、觸媒等條件會對利用VLS機制成長之氧化鋅奈米線有很大的影響。氧化鋅奈米線直徑和觸媒層的晶粒尺寸有關,且隨著沉積時間的長短而變化。使用溶膠凝膠法製備之氧化鋅薄膜具有顯著的c軸優先成長取向及高透明性,晶粒尺寸亦隨著熱處理溫度增加而增加,在750oC時,晶粒尺寸約為50 nm;光激發光譜中,可以觀察到薄膜發光波長約為380 nm和520 nm,其特性亦與摻雜物有關,薄膜摻雜1.6 at%的鋁含量並在750oC作熱處理有最小電阻值,約為3 ohm-cm,薄膜穿透率在可見光範圍約有85~90 %的透光率。以溶膠凝膠法合成之氧化鋅粉末其結構呈現多方向性生長特性。由實驗結果得知,熱處理溫度是影響氧化鋅的結構與光電特性最主要的因素。

    Zinc oxide (ZnO) is a wide band gap II-VI semiconductor material having very attractive properties at room temperature, such as high transparency in the 0.4~2 m optical wavelength range, high piezoelectric constant, large electro-optic coefficient, high luminescence efficiency and large exciting bind energy.
    In this study, ZnO nanowires were grown at about 900oC by using gold and ZnO as catalyst via Vapor-Liquid-Solid (VLS) mechanism. Furthermore, the thin film and powder of ZnO were prepared by sol-gel spin coating method. The ZnO thin films were coated on Si (100) and corning 7059 glass substrate. Structural investigation including surface morphology and microstructure was carried out by XRD, SEM and AFM measurements. Also, optical properties were determined by photoluminescence (PL) and UV-VIS spectrum analyses.
    The growth of ZnO nanowires has been achieved by vapor-liquid-solid method. According to the experimental results, deposition temperature, deposition time and catalysts are the main factors on the growth properties of ZnO nanowires. The diameter of ZnO nanowires depended on the grain size of catalyst layer and the deposition time. Highly preferential c-axis orientation ZnO thin films with transparent and conductive properties have been prepared by the sol-gel method. The SEM images show that the grains sizes increased with increasing annealing temperature up to 750oC, where the particle size was about 50 nm. Furthermore, PL spectra showed two main peaks centered at about 380 nm (UV) and 520 nm (green). The minimum sheet resistance, around 3 ohm-cm, was obtained for the thin film doped with 1.6 at. % Al (AZO) and then annealed at 750 oC. Meanwhile, all AZO films deposited on glass are very transparent, around 85 ~ 95 % transmittance, within the visible wavelength region. The powders of ZnO were achieved by the sol-gel route. Their structure showed a multi-direction growth property. It was proposed that thermal treatment temperature plays an important role on the structural and optical properties of ZnO.

    目錄 誌 謝……………………………………………………………………Ⅰ 中文摘要…………………………………………………………………Ⅱ 英文摘要…………………………………………………………………Ⅲ 目 錄……………………………………………………………………Ⅳ 表目錄……………………………………………………………………Ⅶ 圖目錄……………………………………………………………………Ⅷ 第一章 前言……………………………………………………………1 1-1 研究背景…………………………………………………………1 1-2 研究目的…………………………………………………………3 第二章 基本理論與文獻回顧…………………………………………4 2-1 溶膠凝膠法………………………………………………………4 2-1.1 起始原料的選擇……………………………………………5 2-1.2 覆膜方式……………………………………………………6 2-1.3 溶膠凝膠法之主要影響參數………………………………10 2-1.4 低溫焦化熱處理……………………………………………11 2-1.5 高溫結晶熱處理……………………………………………11 2-2 透明導電薄膜……………………………………………………13 2-3 薄膜之晶體結構…………………………………………………15 2-3.1 氧化鋅特性…………………………………………………15 2-3.2 AZO薄膜之特性……………………………………………19 2-4 ZnO與AZO之光學特性…………………………………………20 2-5 ZnO與AZO之電學特性…………………………………………21 2-6 氧化鋅奈米線之研究……………………………………………22 2-6.1 一維奈米材料製備方式與成長機制…………………………22 2-6.2 一維奈米材料製備方式………………………………………23 2-6.3 一維奈米材料製備成長機制…………………………………24 第三章 實驗方法與步驟………………………………………………25 3-1 前驅物準備………………………………………………………25 3-2 實驗流程…………………………………………………………27 3-2.1 一維:氧化鋅之奈米線……………………………………27 3-2.2 二維:氧化鋅薄膜…………………………………………29 3-2.3 三維:氧化鋅塊材…………………………………………34 3-3 薄膜特性分析……………………………………………………35 第四章 結果與討論……………………………………………………39 4-1 VLS成長機制成長氧化鋅奈米線………………………………39 4-1.1 氧化鋅奈米線成長過程………………………………………39 4-1.2 X-ray diffraction 鑑定奈米線之結構…………………………43 4-1.3 光激發光譜分析研究…………………………………………44 4-1.4 表面微結構之分析研究………………………………………46 4-2 氧化鋅薄膜之成長機制……………………………………………49 4-2.1 氧化鋅薄膜不同退火溫度之效應……………………………49 4-2.2 X-ray diffraction 結構分析……………………………………49 4-2.3 光學性質分析…………………………………………………53 4-2.4 電性分析………………………………………………………57 4-2.5 表面微結構分析………………………………………………58 4-3 摻雜鋁對氧化鋅薄膜之影響………………………………………64 4-3.1氧化鋅薄膜不同退火溫度之效應………………………………64 4-3.2 X-ray diffraction 結構分析………………………………………64 4-3.3 光學性質分析……………………………………………………68 4-3.4 電性分析…………………………………………………………72 4-3.5 表面微結構分析…………………………………………………73 4-4 氧化鋅粉末與塊材……………………………………………………77 4-4.1 X-ray diffraction 結構分析………………………………………77 4-4.2 光學性質分析……………………………………………………78 第五章 結論………………………………………………………………79 參考文獻……………………………………………………………………81

    [1] 陳三元, “強介電陶瓷薄膜的製程與應用”, 工業材料125 期,民86 年5 月,pp. 86-89.
    [2] 陳三元,“強介電之薄膜液相化學製作”, 工業材料108 期,民84 年12 月,pp. 100-111.
    [3] 董建岳,“奈米孔洞無機材料之製備”,化工科技與商情42期,民92年3月,pp. 33-36.
    [4] C. J. Brinker and G. Scherer, “The Physics and Chemistry of Sol-Gel Processing”, Sol-Gel Science, Academic Press, New York, 1990.
    [5] 蔣孝撤 “溶凝膠製作與應用專輯”,化工,第46卷第5期,民88年,pp. 12-15.
    [6] 陳慧英、黃定加、朱秦億 “溶膠凝膠法在製備膜薄上之應用”,化工技術第七卷第十一期,1999年11月,pp. 152-166.
    [7] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, and P. Vilarinho, “Al-doped ZnO thin films by sol–gel method”, Surface and Coatings Technology, 180 –181, (2004) pp. 659-662.
    [8] 吳炳佑、蔣孝澈 “溶膠凝膠法製備薄膜及其應用”,材料科學28期,(1996) pp.169-181.
    [9] G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO:Al thin films preparedby sol-gel dip-coating”, Journal of the European Ceramic Society, 24, (2004) pp. 1009-1013.
    [10] Yoshihiro Kokubun, Hiroko Kimura, and Shinji Nakagomi, “Preparation of ZnO Thin Films on Sapphire Substrates by Sol-Gel Method”, Jpn. J. Appl. Phys., 42, (2003) pp. 904-906.
    [11] Y. M. Sun, W. F. Huang, and C. C. Chang, “Spray-coated and solution-cast ethylcellulose pseudolatex membranes”, Journal of Membrane Science, 157, (1999) pp. 159-170
    [12] J. H. Lee, K. H. Ko, and B. O. Park, “Electrical and optical properties of ZnO transparentconducting films by the sol–gel method”, Journal of Crystal Growth, 247, (2003) pp. 119-125.
    [13] 楊明輝 “透明導電膜材料與成膜技術的新發展”,工業材料雜誌189 期,91 年9 月,pp. 161-174.
    [14] J. I. Pankove, Optical Progress in Semiconductors, Dover, New York, 1975
    [15] F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade, and M. M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin solid Films, 366, (2000) pp. 16-27.
    [16] R. Wang, L. H. King and A. W., “Highly conducting transparent thin films based on zinc oxide”, Sleight, J. Mater. Res., 11, (1996) pp. 1659-1664.
    [17] Dinghua Bao, Haoshuang Gu and Anxiang Kuang, “Sol-gel-derived c-axis oriented ZnO thin films”, Thin solid films, 312, (1998) pp. 37-39
    [18] D. G. Baik, and S. M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films, 354, (1999) pp. 227-231.
    [19] Hyun-Wook Ryua, and Bo-Seok Park, “ZnO sol–gel derived porous film for CO gas sensing”, Sensors and Actuators B, 96, (2003) pp.717-722.
    [20] L. Znaidi, and G. J.A.A. Soler Illia , “Oriented ZnO thin films synthesis by sol–gel process for laser application”, Thin Solid Films, 428, (2003) pp. 257-262.
    [21] J. H. Lee, and B. O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”, Thin Solid Films, 426, (2003) pp. 94-99.
    [22] M. T. Young, and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films”, Thin solid films, 410, (2002) pp. 8 -13.
    [23] G. K. Paul, and S. K. Sen, “Sol-gel preparation, characterizeation and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films”, Materials Letters, 57, (2002) pp. 742-746.
    [24] Delia Cristina Altamirano-Ju!arez, “Low-resistivity ZnO:F:Al transparent thin films”, Solar Energy Materials & Solar Cells, 82, (2004) pp. 35-43.
    [25] 黃琇澤, “以反應濺鍍法製備氧化鋅薄膜與摻雜鋁之研究”, 中山大學材料所碩士論文, 民國92年6月
    [26] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties”, Thin solid films, 435, (2003) pp. 78 -82.
    [27] Shim, Eun Sub; Kang, Hong Seong; Kang, Jeong Seok; Kim, Jong Hoon; Lee, Sang Yeol, “Effect of the variation of films thickness on the structure and optical properties of ZnO thin films deposition on sapphire substrate using PLD”, Appl. Surf. sci., 186, (2002) pp. 474-476.
    [28] P. Nunes, E. Fortunato, and R. Martins, “Influence of the annealing conditions on the properties of ZnO thin films”, International Journal of Inorganic Materials, 3, (2001) pp. 1125-1128.
    [29] A. El Hichou b.c., and M. Addou, “Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis”, Materials Chemistry and Physics, 83, (2004) pp. 43-47.
    [30] Y. Natsume, and H. SakataU, “Zinc oxide films prepared by sol-gel spin-coating”, Thin Solid Films, 372, (2000) pp. 30-36.
    [31] H. L. Hartnagel, and A. K. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publishing,(1995)
    [32] Rodrigo F. Silva, and Maria E.D. Zaniquelli, “Aluminium-doped zinc oxide films prepared by an inorganic sol–gel route”, Thin Solid Films, 449, (2004) pp. 86-93.
    [33] T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin, August, (2000) pp. 38-41.
    [34] Jin-Hong Lee, and Byung-Ok Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”, Thin Solid Films, 426 (2003) pp. 94-99.
    [35] S. H. Jeong, and J. H. Boo, “Influence of target-to-substrate distance on the properties of AZO filmsgrown by RF magnetron sputtering”, Thin Solid Films, 447–448, (2004) pp. 105-110.
    [36] F. K. Shan, and Y. S. Yu, “Band gap energy of pure and Al-doped ZnO thin films”, Journal of the European Ceramic Society, 24, (2004) pp. 1869-1872.
    [37] R. A. Swalin, “Thermodynamics of Solids”, John Wiley & Sons, New York, (1972) p. 335.
    [38] M. H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, and Richard Russo,Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science., 292, (2001) pp. 1897-1899.
    [39] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Letters, 4, (1964) pp. 89-90.
    [40] Pu Xian Gao, and Zhong L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process”, J. Phys. Chem. B, 108, (2004) pp. 7534-7537.
    [41] N. Wang, Y. H. Tang, Y. F. Zhang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Transmission electron microscopy evidence of the defect structure in Si nanowire synthesized by laser ablation”, Chemical Physics Letters, 283, (1998) pp. 368-372.
    [42] Wang, Xianyou, Huang, Weiguo, Sebastian, P.J., and Gamboa, Sergio, “Sol–gel template synthesis of highly ordered MnO2 nanowire arrays”, Journal of Power Sources, 140, (2005) pp. 211-215.
    [43] Saedi, A, and Ghorbani, M., “Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Materials Chemistry and Physics, 91 (2-3), (2005) pp. 417-423.
    [44] S. Chakrabarti, and S. Chaudhuri, “Microstructural and photoluminescent characterization of one-dimensional ZnO nanostructures prepared by catalyst-assisted vapour–liquid–solid technique”, Materials Chemistry and Physics, 87, (2004) pp. 196-200.
    [45] L. Sagalowicz, G. R. Fox, “Planar defects in ZnO thin films deposited on optical fibers and flat substrates”, J. of Mater. Research 14, (1999) pp. 1876-1885.
    [46] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders.” J. Appl. Phys., 79, (1996) pp. 7983-7990.
    [47] 張立德、牟季美 “納米材料和納米結構”,科學出版社, (2001) p. 82.
    [48] K. H. Kim, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81 (12), (1997) pp. 7764-7772.
    [49] J. H. Lee, B. W. Yeo, and B. O. Park, “Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis”, Thin Solid Films, 457, (2004) pp. 333-337.
    [50] W. K. Burton, N. Carberra and F.C. Frank, “The growth of crystals and the equilibrium structure of their surfaces”, Phil. Trans. Roy. Soc. London, A 243, (1951) pp. 299-358.
    [51] D. Jiles,“Introduction to the Electronic Properties of Materials”, Chapman & Hall, (1994) ISBN 0 412 49590
    [52] I. K. El Zawawi, R. A. Abd Alla, “Electrical and optical photo transformation properties in As doped Se thin films”, Thin Solid Films, 339, ( 1999 ) pp. 314-319.
    [53] D. F. Paraguay, L. W. Estrada, N.D.R. Acosta, E. Andrade, and M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films, 350, (1999) pp. 192-202.
    [54] Schleede and Bartels, “The rise and decay of photo changes in phosphors”, technical. Physics. Letters, 19, (1938) p. 364.
    [55] Dinghua Bao, Haoshuang Gu, and Anxiang Kuang, “Sol-gel derived c-axis oriented ZnO thin film”, Thin Solid Films, 312, (1998) pp. 37-39.
    [56] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical
    and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films 199, (1991) pp. 223-230.
    [57] Zhai Jiwei, Zhang Liangying, and Yao Xi, “The dielectric properties and optical propagation loss of c-axis oriented ZnO thin films deposited by sol-gel process”, Ceramics International, 26, (2000) pp. 883-885.
    [58] J. Mass, P. Bhattacharya, and R.S Katiyar, “Effect of high substrat temperature on Al-doped Zno thin films grown by pulsed laser deposition”, Materials Science and Engineering B, 103, (2003) pp. 9-15.
    [59] Fang GJ, Li DJ, and Yao BL, “Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by DC magnetron sputtering”, physics status solid a-applied research, 193, (2002) pp. 139-152.
    [60] J. Venables, “Nucleation and Growth of Thin Films”, Rep. Phys., 47, (1984) pp. 399-459
    [61] G. K. Paul, S. Bandyopadhyay and S. K. Sen, “Transport properties of as-prepared Al-doped Zinc oxide films using sol-gel method”, Phys. Stat. sol. (a) 191, (2002) pp. 509-518.
    [62] T. Minami, H. Sato, H. Imamoto and S. Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering”, Japanese Journal of Applied Physics., 31, (1992) pp. L257-L260.
    [63] Guojia Fanga, Dejie Lia, and Bao-Lun Yao, “Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering”, Vacuum, 68, (2003) pp. 363-372.

    QR CODE