Basic Search / Detailed Display

Author: 何書安
Shu-An He
Thesis Title: 氧化鋅奈米線/奈米鑽石薄膜複合結構之特性研究
A study on the properties of composite structure of ZnO nanowires and nanocrystalline diamond thin films
Advisor: 程金保
Cheng, Chin-Pao
黃柏仁
Huang, Bohr-Ran
Degree: 碩士
Master
Department: 機電工程學系
Department of Mechatronic Engineering
Thesis Publication Year: 2009
Academic Year: 97
Language: 中文
Number of pages: 88
Keywords (in Chinese): 氧化鋅奈米線奈米鑽石薄膜場發射電漿處理
Keywords (in English): ZnO nanowires, nanodiamond films, field emission, plasma treatment
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 271Downloads: 8
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 氧化鋅(ZnO)為一寬能帶間隙半導體材料,並且擁有許多吸引人的特性,例如奈米結構多變性、室溫下有很高的發光效率和高激子束縛能、高壓電特性、無毒性可應用於光電生醫方面。在本論文中使用氧化鋅奈米線(Zinc oxide nanowires, ZnO NW)和奈米鑽石薄膜(nanocrystalline diamond thin films, ND)製作複合結構,首先利用微波電漿化學氣相沉積系統成長奈米鑽石薄膜,接著分別利用水熱法以及VLS 法成長氧化鋅奈米線於奈米鑽石薄膜上。
    研究結果發現水熱法成長氧化鋅奈米線/奈米鑽石薄膜複合結構之場發射起始電場可降低至5.6 V/μm、場增強因子為1286。VLS法成長氧化鋅奈米線/奈米鑽石薄膜結構之場發射起始電場為6.5 V/μm、場增強因子為1565,與單純奈米鑽石薄膜比較,證實成長氧化鋅奈米線於奈米鑽石薄膜上之複合結構有效提升場發射特性。單純氧化鋅奈米線之電漿後處理場發射特性結果發現,分別以氬氣電漿作用1、3、5分鐘後,發現氬氣電漿處理1分鐘可降低起始電場至12.4 V/μm、提升場增強因子至526。以氫氣電漿作用1、3、5分鐘後,得到結果為氫氣電漿處理3分鐘可降低起始電場至10.6 V/μm、提升場增強因子至903。綜合VLS法成長複合結構與氫電漿處理3分鐘之試片,起始電場為6.6 V/μm、場增強因子為1951,與前述之複合結構比較後,證實綜合VLS法成長複合結構與氫電漿處理3分鐘之試片擁有較佳的場發射特性。

    In this study, the nanocrystalline diamond film was deposited on silicon substrate using methane/hydrogen/oxygen (30/169/0.2 sccm) mixed gas by
    microwave plasma chemical vapor deposition (MPCVD) system. Different synthetic techniques, hydrothermal technique and vapor liquid solid (VLS) technique, are used to grow Zinc oxide (ZnO) nanowires on nanocrystalline diamond films (nano-diamond films). For the hydrothermal technique, a 180 nm thick of ZnO film is coated as a seeded layer on nano-diamond film. ZnO nanowires are grown by immersing in a mixture of solution (Zinc nitrate (Zn(NO3)2 . 6H2O) and Hexamethylenetetramine (HMTA) in deionized water) at 90 oC for 3 hours. For the VLS technique, a 10 nm thick of Au layer is coated on nano-diamond films as catalyst. ZnO nanowires are synthesized using a mixture of ZnO and graphite powder as the source in a furnace at 850 oC with 100 sccm of Ar gas at 20 torr for 30 min. However, it is indicated that the field enhancement factor are both improved for the ZnO/nano-diamond structure compared to ZnO/Si structure by hydrothermal (307 to 1286) and by VLS (386 to 1565). ZnO nanowires are treated by Ar and H2 plasma for 1, 3 and 5 min. It is observed that the field enhancement factor of Ar plasma treatment for 1 min are
    526. It is noted that the turn on field and critical current density of H2 plasma treatment for 3 min are 903. The best condition of turn on field and field enhancement factor are 6.6 V/μm and 1951, which is obtained from the VLS
    ZnO NW/ND and then treated by H2 plasma for 3 min.

    摘要.......................................................I Abstract..................................................II 誌謝.....................................................III 目錄......................................................IV 表目錄...................................................VII 圖目錄..................................................VIII 第一章 前言.................................................1 第二章 基本理論與文獻回顧.....................................4 2.1 氧化鋅奈米線之研究.....................................4 2.2 一維奈米材料成長機制...................................7 2.2.1 水熱法成長機制....................................7 2.2.2 VLS 法成長機制...................................10 2.3 場發射理論...........................................12 2.3.1 奈米鑽石薄膜場發射特性............................13 2.3.2 提升場發射特性之相關研究...........................15 第三章 實驗方法與步驟.......................................23 3.1 實驗流程.............................................23 3.2 奈米鑽石薄膜成長......................................24 3.2.1 矽晶圓清洗.......................................24 3.2.2 基板之前處理.....................................24 3.2.3 成長奈米鑽石薄膜..................................25 3.3 水熱法成長氧化鋅奈米線................................27 3.3.1 實驗藥品準備.....................................27 3.3.2 實驗步驟.........................................27 3.4 VLS 法成長氧化鋅奈米線................................30 3.4.1 實驗藥品準備.....................................30 3.4.2 實驗步驟.........................................30 3.5 電漿處理.............................................32 3.5.1 氧化鋅奈米線之電漿後處理...........................32 3.6 實驗儀器分析.........................................34 3.6.1 場發射掃描式電子顯微鏡(FE-SEM)....................34 3.6.2 X 射線繞射儀(X-ray diffraction, XRD)............34 3.6.3 顯微拉曼光譜儀(Micro-raman)......................35 3.6.4 光激發螢光光譜儀(Photoluminescence, PL)...........35 3.6.5 電流電壓(I-V)量測................................36 3.6.6 場發射電性量測...................................36 第四章 結果與討論...........................................38 4.1水熱法成長氧化鋅奈米線/奈米鑽石薄膜之性質.................38 4.1.1 型貌分析.........................................38 4.1.2 X-ray 繞射儀之分析...............................40 4.1.3 拉曼光譜儀之分析..................................41 4.1.4 UV 拉曼光譜儀之分析...............................43 4.1.5 光激發螢光光譜儀之分析............................44 4.1.6 I-V 曲線之分析...................................45 4.1.7 場發射特性之分析..................................47 4.2 VLS 法成長氧化鋅奈米線/奈米鑽石薄膜之性質...............51 4.2.1 型貌分析.........................................51 4.2.2 X-ray 繞射儀之分析...............................52 4.2.3 拉曼光譜儀之分析..................................53 4.2.4 UV 拉曼光譜儀之分析...............................54 4.2.5 光激發螢光光譜儀之分析............................55 4.2.6 I-V 曲線之分析...................................56 4.2.7 場發射特性之分析..................................57 4.3 氧化鋅奈米線電漿處理效應...............................61 4.3.1 氧化鋅奈米線之氬氣電漿後處理.......................61 4.3.2 氧化鋅奈米線之氫氣電漿後處理.......................68 4.4 複合結構之氫氣電漿後處理效應...........................73 第五章 結論與展望...........................................76 5.1 結論................................................76 5.2 未來展望.............................................77 參考文獻...................................................78

    [1] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 279 (1998) 208−211.
    [2] X. F. Duan, Y. Huang, Y. Cui, J. Wang, L. Lauhon, K. Kim, and C.M. Lieber, “Logic gates and computation from assembled nanowire building blocks”, Science, 294 (2001) 1313−1317.
    [3] Y. Cui and C.M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 291 (2001) 851−853.
    [4] X. F. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature, 409 (2001) 66−69.
    [5] T. W. Odom, J. L. Huang, P. Kim, and C.M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, 391 (1998)
    62−64.
    [6] H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tmobler, A. Cassell, S. Fan, and M. Chapline, “Controlled chemical routes to nanotube architectures, physics, and devices”, Journal of Physical Chemistry B, 103 (1999) 11246−11255.
    [7] S. J. Tans, R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49−52.
    [8] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions”, Science, 288 (2000) 494−497.
    [9] P. G. Collins, M. S. Arnold, P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”, Science, 292 (2001) 706−709.
    [10] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, 209 (2001) 1947−1949.
    [11] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Advanced Functional Materials, 13 (2003) 9−24.
    [12] X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, Nano Letters, 3 (2003) 1625−1631.
    [13] R. H. Fowler and L. Nordheim, “Electron emission in intense electric field”, Proceedings of the Royal Society of London Series A, 119 (1928) 173−181.
    [14] C. A. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics, 39 (1968) 3504−3505.
    [15] http://www.action.com.tw/tech/lcd/fed
    [16] Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao, and D. P. Yu, “Field-emission from long SnO nanobelt arrays”, Applied Physics Letters, 85 (2004) 5682−5685.
    [17] T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu, and H. Asahi, “Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides”, Applied Physics Letters, 86 (2005) 082109−082110.
    [18] Z. Pan, H.L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. Xie, “Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties”, Advanced Materials, 12 (2000) 1186−1190.
    [19] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires”, Applied Physics Letters, 75 (1999) 1700−1703.
    [20] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354 (1991) 56−58.
    [21] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363 (1993) 603−605.
    [22] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperial College Press, 1998.
    [23] Q. Cui, Y. Huang, and Z. Zhu, “Synthesis and field emission of novel ZnO nanorod chains”, Current Applied Physics, 9 (2009) 426−430.
    [24] Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, “Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation”, Applied Physics Letters, 83 (2003) 2253−2256.
    [25] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, and Q. Zhao, “Efficient field emission from ZnO nanoneedle arrays”, Applied Physics Letters, 83 (2003) 144−147.
    [26] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field-emission studies on thin films of zinc oxide nanowires”, Applied Physics Letters, 83 (2003) 4821−4823.
    [27] Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, “Stable field emission from tetrapod-like ZnO nanostructures” Applied Physics Letters, 85 (2004) 636−639.
    [28] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng, and S. C. Kung, “ZnO nanopencils: Efficient field emitters”, Applied Physics Letters, 87 (2005) 013110-1−013110-3.
    [29] K. B. Zheng, H. T. Shen, J. L. Li, D. L. Sun, G. R. Chen, K. Hou, C. Li, and W. Lei, “The fabrication and properties of field emission display based on ZnO tetrapod-liked nanostructure”, Vacuum, 83 (2009) 261−264.
    [30] J. I. Pankove, “Optical Progress in Semiconductors”, Dover, New York, 1975.
    [31] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology”, Materials Science and Engineering R, 64 (2009) 33−71.
    [32] D. Bao, H. Gu, and A. Kuang, “Sol-gel-derived c-axis oriented ZnO thin films”, Thin Solid Films, 312 (1998)7−39.
    [33] F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade, and M. M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin Solid Films, 366 (2000)
    16−27.
    [34] R. Wang, L. H. King, and A. Wang, “Highly conducting transparent thin films based on zinc oxide”, Journal of Materials Research, 11 (1996) 1659−1664.
    [35] J. Jagadish and S. J. Pearton, “Zinc Oxide Bulk”, Thin Film and Nanostructures, Elsevier, 2006.
    [36] R. Alexandrescu, A. Crunteanu, R. E. Morjan, I. Morjan, F. Rohmund, L. K. L. Falk, G. Ledoux, and F. Huisken, “Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition”, Infrared Physics and
    Technology, 44 (2003) 43−50.
    [37] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y.H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, “Nanoscale silicon wires synthesized using simple physical evaporation”, Applied Physics Letters, 72
    (1998) 3458−3461.
    [38] P. Yang, “The chemistry and physics of semiconductor nanowires”, Mrs Bulletin, 30 (2005) 85−91.
    [39] Y. F. Zhang, Y. H. Zhang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon nanowires prepared by laser ablation at high temperature”, Applied Physics Letters, 72 (1998) 1835−1838.
    [40] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation”, Applied Physics Letters, 73 (1998) 3902−3905.
    [41] S. D. Hutagalung, K. A. Yaacob, and A. F. A. Aziz, “Oxide-assisted growth of silicon nanowires by carbothermal evaporation”, Applied Surface Science, 254 (2007) 633−637.
    [42] Z. W. Pen, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, 291 (2001) 1947−1949.
    [43] C. J. Lee and J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition”, Applied Physics Letters, 77 (2000) 3397−3400.
    [44] Z. Y. Juang, J. F. Lai, C. H. Weng, J. H. Lee, H. J. Lai, T. S. Lai, and C. H. Tsai, “On the kinetics of carbon nanotube growth by thermal CVD method”, Diamond and Related Materials, 13 (2004) 2140−2146.
    [45] M. P. Siegal, D. L. Overmyer, and P. P. Provencio, “Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition”, Applied Physics Letters, 80 (2002) 2171−2174.
    [46] S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro, “Purification of carbon nanotubes grown by thermal CVD”, Physica E: Low-dimensional Systems and Nanostructures, 37 (2007) 58−61.
    [47] T. D. Makris, L. Giorgi, R. Giorgi, N. Lisi, and E. Salernitano, “CNT growth on alumina supported nickel catalyst by thermal CVD”, Diamond and Related Materials, 14 (2005) 815−819.
    [48] Z. H. Wu, X.U. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy”, Applied Physics Letters, 81 (2002) 5177−5180.
    [49] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy”, Applied Physics Letters, 83 (2003) 2665−2668.
    [50] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Gosele, “Silicon nanowhiskers grown on (111) Si substrates by molecular-beam epitaxy ”, Applied Physics Letters, 84 (2004) 4968−4970.
    [51] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers”, Applied Physics Letters, 80 (2002) 1058−1060.
    [52] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physical B, 403 (2008) 3713−3717.
    [53] S. Dalui, S. N. Das, R. K. Roy, R. N. Gayen, and A. K. Pal, “Aligned Zinc Oxide nanorods by hybrid wet chemical route and their field emission properties”, Thin Solid Films, 516 (2008) 8219−8226.
    [54] M. Eskandari, V. Ahmadi, and S. H. Ahmadi, “Low temperature synthesis of ZnO nanorods by using PVP and their characterization”, Physical B, 404 (2009) 1924−1928.
    [55] S. R. Hejazi, H. R. M. Hosseini, and M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism”, Journal of Alloys and
    Compounds, 455 (2008) 353−357.
    [56] O. Gunawan and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells”, Solar Energy Materials and Solar Cells, 93 (2009) 1388−1393.
    [57] X. D. Wang, J. H. Song, and Z. L. Wang, “Single-crystal nanocastles of ZnO”, Chemical Physics Letters, 424 (2006) 86−90.
    [58] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1st edition 2004.
    [59] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203 (1999)
    186−196.
    [60] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine”, Journal of Sol-gel
    Science and Technology, 39 (2006) 49−56.
    [61] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Applied Physics Letters, 4 (1964) 89−91.
    [62] N. Wang, Y. Cai, and R.Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 1−51.
    [63] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 (2001) 1897−1899.
    [64] J. E. Field, “The Properties of Diamonds”, Academic, London, 1979.
    [65] Q. Wang, Z. L. Wang, J. J. Li, Y. Huang, Y. L. Li, and C. Z. Gu, “Field electron emission from individual diamond cone formed by plasma etching”, Applied Physics Letters, 89 (2006) 063105−063106.
    [66] Y. S. Zou, K. L. Ma, W. J. Zhang, Q. Ye, Z. Q. Yao, Y. M. Chong, and S. T. Lee, “Fabrication of diamond nanocones and nanowhiskers by bias-assisted plasma etching”, Diamond and Related Materials, 16 (2007) 1208−1212.
    [67] W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, Y. H. Kim, K. H. Park, and S. Lee, “Field emission characteristics of CuO nanowires by hydrogen plasma
    treatment”, Vacuum, 81 (2007) 851−856.
    [68] Y. Z. Hu, R. Sharangpani, and S. P. Tay, “In situ rapid thermal oxidation and reduction of copper thin films and their application in ultralarge scale integration”, Journal of The Electrochem Society, 148 (2001) G669−G675.
    [69] T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application”, Applied Physics Letters, 88 (2006) 263118-1−263118-3.
    [70] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, 78 (2001) 3842−3844.
    [71] Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, and I. N. Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 (2008) 753−757.
    [72] Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chemical Physics Letters, 403 (2005) 248−251.
    [73] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ICDD, Swarthmore, PA, 1996, Card 36−1451 (ZnO).
    [74] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li”, Applied Physics Letters, 83 (2003)
    1974−1977.
    [75] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals”, Physical Review, 181 (1969) 1351-1363.
    [76] T.C. Damen, S.P.S. Porto, B. Tell, “Raman effect in zinc oxide”, Physical Review, 142 (1966) 570−574.
    [77] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D.P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth”, Applied Physics Letters, 83
    (2003) 1689−1692.
    [78] Y. Wang, X. Li, N. Wang, X. Quan, and Y. Chen, “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities”, Separation and Purification Technology, 62 (2008) 727−732.
    [79] J. T. Chen, J. Wang, R. F. Zhuo, D. Yan, J. J. Feng, F. Zhang, and P. X. Yan, “The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process”, Applied Surface Science,
    255 (2009) 3959−3964.
    [80] J. H. Yang, J. H. Zheng, H. J. Zhai, L. L. Yang, Y. J. Zhang, J. H. Lang, and M. Gao, “Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates”, Journal of Alloys and Compounds,
    475 (2009) 741−744.
    [81] P. Zhao, Y. B. Xia, L. J. Wang, J. M. Liu, R. Xu, H. Y. Peng, and W. M. Shi, “Performance improvement of ZnO film by room-temperature oxygen plasma pretreatment”, Transactions of Nonferrous Metals Society of China,
    16 (2006) s310−s312.
    [82] H. S. Uh, S. W. Ko, and K. D. Lee, “Growth and field emission properties of carbon nanotubes on rapid thermal annealed Ni catalyst using PECVD”, Diamond and Related Materials, 14 (2005) 850−854.
    [83] D. Pradhan, Y. C. Lee, C. W. Pao, W. F. Pong, and I. N. Lin, “Low temperature growth of ultrananocrystalline diamond film and its field emission properties”, Diamond and Related Materials, 15 (2006) 2001−2005.
    [84] F. A. M. Koeck, M. Zumer, V. Nemanic, and R. J. Nemanich, “Photo and field electron emission microscopy, from sulfur doped nanocrystalline diamond films”, Diamond and Related Materials, 15 (2006) 880−883.
    [85] F. A. M. Kock, J. M. Garguilo, and R. J. Nemanich, “Direct correlation of surface morphology with electron emission sites for intrinsic nanocrystalline
    diamond films”, Diamond and Related Materials, 13 (2004) 1022−1025.
    [86] J. Chen, W. Lei, W. Q. Chai, Z. C. Zhang, C. Li, and X. B. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis”, Solid-State Electronics, 52 (2008) 294−298.
    [87] H. Jin, Y. L. Li, J. J. Li, and C. Z. Gu, “Field emission from ZnO nanostructures with different morphologies”, Microelectronic Engineering, 86 (2009) 1159−1161.
    [88] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ICDD, Swarthmore, PA, 1996, Card 65−2870 (Gold).
    [89] http://www.creatingpnanotech/technology2.html
    [90] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates”, Applied Physics Letters, 86 (2005)
    183103−183104.

    下載圖示
    QR CODE