Basic Search / Detailed Display

Author: 陳俊宏
Chen, Chun-Hung
Thesis Title: 氧化鋅奈米線披覆鐵酸鉍薄膜之氣體感測特性研究
Gas Sensing Properies of Zinc Oxide Nanowires coated Bismuth Ferrites Thin Films
Advisor: 程金保
Cheng, Chin-Pao
鄭淳護
Cheng, Chun-Hu
Degree: 碩士
Master
Department: 機電工程學系
Department of Mechatronic Engineering
Thesis Publication Year: 2015
Academic Year: 103
Language: 中文
Number of pages: 89
Keywords (in Chinese): 氧化鋅奈米線氣體感測器鐵酸鉍介電質感測響應時間
Keywords (in English): ZnO Nanowire, Gas Sensor, BiFeO Dielectric, Sensing Response Time
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 86Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究利用了水熱法在玻璃基板成長氧化鋅奈米線陣列,再使用磁控濺鍍製程沉積鐵酸鉍薄膜,進行兩者靈敏度比較。首先比較不同厚度之氧化鋅種晶層,並探討種晶層對奈米線表現形貌的關係,研究結果發現,隨著種晶層的厚度增加,表面粗糙度會降低,其奈米線的線徑與線長都會降低。再對丙酮與氨水兩種氣體進行氣體感測實驗,然後使用表面改質製程,採用了低溫濺鍍製程沉積鐵酸鉍(BiFeO)薄膜披覆氧化鋅奈米線上增加其感測靈敏度。再利用水熱法成長厚度27、35、42 nm的種晶層之氧化鋅奈米線,並在操作溫度100°C、150°C與200°C下進行丙酮與氨水氣體感測,研究結果顯示,種晶層厚度35 nm所成長的氧化鋅奈米線具有最佳的感測靈敏度(丙酮氣體S =7.2 和氨水氣體S= 3.72) ;接著比較鐵酸鉍薄膜披覆於氧化鋅奈米線與純氧化鋅奈米線兩者的氣體感測靈敏度,結果顯示,有鐵酸鉍薄膜之氧化鋅奈米線感測靈敏度有上升的趨勢(丙酮氣體S =7.41 和氨水氣體S= 4.61),且氨水氣體的感測靈敏度有隨著操作溫度的上升而增加的趨勢,最後對氨水進行高溫(300°C)與室溫(25°C)之氣體感測,研究結果指出感測響應速度與氨水濃度成正比的關係,尤其是鐵酸鉍薄膜披覆氧化鋅奈米線感測器,其濃度越高,感測響應就越明顯,即使在低濃度(1 ppm)下也有這個結果。

    In this study, the ZnO nanowires are prepared on glass substrate by using hydrothermal method, and deposited BiFeO thin film on the ZnO nanowires by sputtering; later, comparing the sensitivity of the pure ZnO nanowires and the ZnO nanowires with BiFeO. Different thickness of ZnO seed layer can be obtained by changing the sputtering deposition power, so with the increase of the thickness of seed layer, the surface roughness is reduced, and its nanowires diameter and length will be reduced. Using a hydrothermal method prepares ZnO nanowires of three kind of thickness 27, 35 and, 45 nm, and conducts gas sensing experiment of acetone and ammonia at 100, 150 and 200 °C, respectively. The seed layer thickness of 35 nm grown ZnO nanowires have the best sensing sensitivity (S = 7.2 for acetone, S = 3.72 for ammonia). After that we adopt the surface modification process to deposit the bismuth ferrites thin film coated on ZnO nanowires to increase gas sensitivity, and we find that the BiFeO thin film on ZnO nanowires of sensing sensitivity has been improved (S = 7.41 for acetone, S = 4.61 for ammonia), and ammonia sensing sensitivity are increased when operating temperature increases. Finally, conduct gas sensing experiment of high-temperature (300 °C) and room temperature (25 °C) ammonia, and the response speed is proportional to the concentrations of ammonia, especially BiFeO thin film coated on ZnO nanowires, With the concentrations increase, the response is also increase, even at low concentrations (1 ppm) also have the same result.

    誌謝 i 摘要 ii 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2. 氣體感測器 1 1.3. 研究動機與目的 3 第二章 文獻回顧 5 2.1. 氧化鋅材料特性介紹 5 2.1.1. 半導體金屬氧化物氣體感測器 7 2.1.2. 半導體金屬氧化物機制 7 2.2. 氧化鋅氣體感測器結構研究探討 10 2.2.1. 氧化鋅薄膜式氣體感測器 10 2.2.2. 氧化鋅奈米顆粒氣體感測器 11 2.2.3 線狀&花狀之氧化鋅奈米結構之感測器 12 2.2.4 奈米線氣體感測器 15 2.3 氧化鋅奈米線製備方式 18 2.3.1 有機金屬化學氣相沈積(MOCVD) 18 2.3.2 鋅蒸氣氧化法(Oxidation of Zinc Vapor) 18 2.3.3 氣-液-固體法 (VLS,Vapor-Liquid-Solid)) 19 2.3.4 水熱法(Hydrothermal) 19 2.4. 氧化鋅奈米線氣體感測器研究探討 21 2.4.1. 水熱法製備之感測器 21 2.4.2. 梳狀結構之感測器 22 2.4.3. 添加界面活性劑之氣體感測器 24 2.4.4. 水熱分解法之感測器 26 2.4.5. 使用電漿處理後之氧化鋅奈米線感測器 27 2.5. 鐵酸鉍感測器研究探討 30 2.5.1. 鐵酸鉍材料氣體感測相關研究 30 2.5.2. 鐵酸鉍奈米顆粒感測器 31 2.5.3. 鐵酸鉍粉末應用於氨氣感測器應用 33 2.5.4. 混合奈米結構之鐵酸鉍感測 34 第三章 實驗方法與步驟 36 3.1. 實驗藥品與耗材 36 3.2. 實驗流程與規劃 36 3.2.1 基板清洗 37 3.2.2 沉積氧化鋅種晶層 38 3.2.3 水熱法製備氧化鋅奈米線 38 3.2.4 沉積鐵酸鉍薄膜 41 3.3 材料分析 41 3.3.1 掃描式電子顯微鏡氧化鋅奈米線表面形貌分析 41 3.3.2 X光光電子能譜儀(X-ray photoelectron spectroscopy,XPS) 43 3.3.3 X 光繞射分析儀(X-ray Diffraction, XRD) 43 3.4 電性分析 (Electrical Analysis ) 44 3.4.1 氣體感測實驗分析(Gas sensing test) 46 3.4.2 感測參數設計 47 第四章 結果與討論 50 4.1. 氧化鋅奈米線陣列之研究與討論 50 4.1.1 探討氧化鋅種晶層之厚度效應 50 4.1.2 氧化鋅奈米線陣列表面形貌與尺度效應 54 4.1.3. 使用X-ray繞射分析觀察氧化鋅奈米晶體結構 60 4.2 不同溫度下之氧化鋅奈米線對不同氣體之感測比較結果 61 4.3 鐵酸鉍薄膜之材料分析 65 4.4 探討不同溫度下鐵酸鉍披覆在氧化鋅奈米線之感測 68 4.5. 高溫與室溫之氣體靈敏度比較 75 4.5.1. 高溫(300oC)氨水感測實驗 75 4.5.2. 室溫(25oC)氨水感測實驗 78 第五章 結論與展望 80 5.1 結論 80 5.2 未來展望 81 參考文獻 82

    【1】 P. B. Weisz, Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis, J. Chem. Phys. 21, (1953), 1531.
    【2】 T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films, Anal. Chem. 34, (1962), pp 1502–1503.
    【3】 張均豪,”以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用”國立臺灣師範大學機電科技學系碩士論文,台北,97年7月
    【4】 J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee1, O. K. Tan, L. Vayssieres, Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology17, (2006), pp. 4995–4998.
    【5】 M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi , J. G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity, Sensors and Actuators B 138 , (2009), pp. 168–173.
    【6】 蔡嬪嬪、曾明漢 “氣體感測器之簡介、應用及市場” 材料與社會,第68期(1992)50–56.
    【7】 J. H. Park, S. J. Jang, S. S. Kim, B. T. Lee, Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition, Appl. Phys. Lett89, (2006) , 121108.
    【8】 W.Lee, M.C. Jeong, J. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52, (2004), pp. 3949–3957.
    【9】 Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H. Liang, J. Cryst, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties, Growth, 234, (2002),pp.171-175
    【10】 L.Vayssieres, K. Keis, S.E. Lindquist and A. Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, The Journal of Physical chemistry B 105, (2001), pp.3350‒3352.
    【11】 A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Bismuth ferrites: New materials for semiconductor gas sensors, Sensors and Actuators B: Chemical 4, (1991), pp. 545–549.
    【12】 Z. L. Wang, ZnO nanowire and nanobelt platform for nanotechnology,Materials Science and Engineering R64, (2009), pp. 33–71.
    【13】 R. Wang, L. H. King, and A. W. Sleight, Highly conducting transparentthinfilms based on zinc oxide, Journal of Materials Research 11, (1996), pp.1659−1664.
    【14】 S. Krishnamoorthy and A. A. Iliadis, Properties of high sensitivity ZnOsurface acoustic wave sensors on SiO2⁄(100) Si substrates, Solid−StateElectronics52, (2008), pp.1710−1716.
    【15】 A.A. Hajry, A. Umar, Y. B. Hahn, and D. H. Kim, Growth, propertiesand dye−sensitized solar cells–applications of ZnO nanorods grown bylow−temperature solution process, Superlattices and Microstructures45, (2009), pp.529−534.
    【16】 C. D. Lokhande, P. M. Gondkar, R. S. Mane,V. R. Shinde, and S. H. Han,CBD grown ZnO−based gas sensors and dye−sensitized solar cells,Journal of Alloys and Compounds 475, (2009), pp. 304−311.
    【17】 R. B. H. Tahar, Structural and electrical properties of aluminum-dopedzinc oxide films prepared by sol–gel process, Journal of the EuropeanCeramic Society25, (2005), pp.3301−3306.
    【18】 M. Takata, D. Tsubone, H. Yanagida,Dependence of electrical conductivityof ZnO on degree of sensing, J. Am. Ceram. Soc. 59, (1976), pp.4–8.
    【19】 J.F. McAleer, P.T. Mosely, J.O. Norris and D.E. Williams, Tin dioxide gassensors, J.Chem.Soc. Faraday Trans. 83, (1987),pp.1323-1325.
    【20】 陳一誠、劉旭禎,一氧化碳氣體感測技術,工業材料雜誌 227 期,94年11 月,pp. 68-80.
    【21】 M. S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor, Sensors and Actuators B: Chemical 115, (2006), p.p 128-133.
    【22】 S. J. Changa, W. Y. Wenga, C. L. Hsub, T. J. Hsueha, High sensitivity of a ZnO nanowire-based ammonia gas sensor with Ptnano-particles, Nano Communication Networks 1, (2010), pp 283–288.
    【23】 P. P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, Jouranl of materialsscience 40, (2005) pp.4383 – 4385.,
    【24】 H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocompositesat room temperature, Sensors and Actuators B, 114, (2006), p.p 910–915.
    【25】 N. L. Hung, Synthesis and Gas Sensing Properties of ZnO Nanostructures, Journal of the Korean Physical Society57 ,(2010), pp. 1784-1788.
    【26】 J. H. Park, S. J. Jang, S. S. Kim, B. T. Lee, Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition, Appl. Phys. Lett. 89, (2006), pp. 121108
    【27】 K.S. Kim, H. W. Kim, Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition,Physica B 328, (2003), pp. 368–371.
    【28】 W.Lee, M.C. Jeong, J. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52, (2004), pp. 3949–3957.
    【29】 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science 300, (2003), p.1249.
    【30】 G. Cao, “Nanostructures and nanomaterials: synthesis, properties, andapplication”, Imperial College Press, 1st edition 2004.
    【31】 C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lofshiz, S. T. Lee, High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays, Adv. Mater. 16, (2003), pp838-841.
    【32】 Y.C. Kong, D.P. Yu and B. Zhang, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied physics letters 78,(2001), pp.407-409.
    【33】 L. Liu, C.R. Gorla and S. Liang, Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, Chemistry and electronic materials 29, (2000), pp.69-74.
    【34】 T. J. Hsueh, S. J. Chang, C.L. Hsu, Y.R. Lin, I. C.Chen, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption, Appl. Phys. Lett. 91, (2007),053111.
    【35】 T. J. Hsueh, Y. W. Chen, S. J. Chang, S.F. Wang, C. L. Hsuc, Y. R. Lin, T. S. Lin, I. C. Chene, ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates, Sensors and Actuators B 125, (2007),pp.498–503
    【36】 R.C. Pawar, J.S. Shaikh, A.V. Moholkar, S.M. Pawar, J.H. Kim, J.Y. Patil,S.S. Suryavanshi, P.S. Patil,Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gassensing properties, Sensors and Actuators B, 151, (2010), pp. 212–218.
    【37】 A. Wei, Z. Wang, L.H. Pan, W.W. Li, L. Xiong,X.C. Dong, W. Huang, Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnONanorods, Chin. Phys. Lett. 28,(2011), 080702
    【38】 J. B. K. Law, J. T. L. Thong, Improving the NH3 gas sensitivity ofZnO nanowire sensors by reducing thecarrier concentration, Nanotechnology.19, (2008), 205502.
    【39】 A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Bismuth ferrites: New materials for semiconductor gas sensors, Sensors and Actuators B: Chemical4, (1991), pp. 545–549.
    【40】 T. Arakawa, K. I. Takaga, Y. Tsunemine, J.Shiokawa, CO gas sensitivities of reduced Perovskiteoxide LaCoO3-x, Sensors and Actuators 14, (1988), pp. 215-221.
    【41】 X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, H. L. W. Chan, Gas-Sensing Properties of Perovskite BiFeO3 Nanoparticles, J. Am. Ceram. Soc. 92, (2009), pp.3105–3107.
    【42】 J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, and Y. D. Li, Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors, Chem. Mater. 18, (2006), pp. 867–71.
    【43】 Y. J. Chen, L. Nie, X. Y. Xue, Y. G.Wang, and T. H.Wang, Linear Ethanol Sensing of SnO2 Nanorods with Extremely High Sensitivity, Appl. Phys. Lett. 88, (2006), 083105,
    【44】 M. Dziubaniuka,R. B.Koro, J. Suchaniczb,J. Wyrwaa, M. Rekas, Application of bismuth ferrite protonic conductor for ammonia gasdetection, Sensors and Actuators B 188, (2013), pp. 957– 964.
    【45】 S. D. Waghmare, V. V. Jadhav, S. K. Gore, S. J. Yoon, S. B. Ambade,Efficient gas sensitivity in mixed bismuth ferrite micro (cubes)and nano (plates) structures,Materials Research Bulletin 47, (2012), pp. 4169–4173
    【46】 P. P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, Journalof Materials Science 40,(2005), pp. 4383 – 4385.
    【47】 B.J. Lokhande, Rajaram S. Mane , Sung-Hwan HanI. Park, Z. Li, A. P. Pisano, R. S. Williams, Top-down fabricated silicon nanowire sensors for real-time chemical detection, Nanotechnology 21, (2010) , 015501
    【48】 V. V. Chabukswar, S. Pethkar, A. A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators B 77,(2001), pp.657-663 .
    【49】 C. R. Field, H. J. In, N. J. Begue, P. E. Pehrsson, Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode, American Chemical 83,(2011), pp 4724–4728.
    【50】 丁志明、吳宛玉、葉俊清,氧化鋅晶種層特性對合成氧化鋅奈米線之影響,成大研發快訊,第十二卷第十期 - 2010年三月五日
    【51】 W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin,Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth203,(1999), pp. 186–196
    【52】 L. W. Ji, S. M. Peng , J. S. Wu, W. S. Shih, C. Z. Wu, I. T. Tang, Effect of seed layer on the growth of well-aligned ZnO nanowires, Journal of Physics and Chemistry of Solids, 70, (2009), pp. 1359–1362.
    【53】 J. Liu, J. She, S. Deng, J. Chen, N. Xu, Ultrathin Seed-Layer for Tuning Density of ZnO Nanowire Arrays and Their FieldEmission Characteristics,J. Phys. Chem.C, 112,(2008) , pp. 11685–11690.
    【54】 T. A. Nirmal Peiris, H. Alessa, J. S. Sagu, I. A. Bhatti, P. Isherwood, K. G. Upul Wijayantha, Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells, Journal of Nanoparticle Research, 15, (2013), pp. 21115-21126.

    【55】 S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang,C. L. Hsu, Y. R. Lin, B. R. Huang, Highly Sensitive ZnO Nanowire Acetone VaporSensor With Au Adsorption, IEEE Transactions on nanotechnology,7, (2008), pp.754-759.

    下載圖示
    QR CODE