Basic Search / Detailed Display

Author: 黃秀麗
Thesis Title: 氧化鋅奈米線應用於LED與其特性改良
Application of ZnO nanowires on LED and its characteristic modification
Advisor: 楊啟榮
Yang, Chii-Rong
朱振甫
Chu, Chen-Fu
Degree: 碩士
Master
Department: 機電工程學系
Department of Mechatronic Engineering
Thesis Publication Year: 2011
Academic Year: 99
Language: 中文
Number of pages: 204
Keywords (in Chinese): 發光二極體氧化鋅奈米線水熱法光萃取效率氧化鋅奈米線摻雜鋁
Keywords (in English): light-emitting diode, ZnO nanowrie, hydrothermal method, light extraction efficiency, Al-doped ZnO nanowires
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 215Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 發光二極體是一種極具潛力成為下一世代主要光源的固態照明技術。在發光二極體的發展過程中,歷來技術上之突破大幅改善其光電特性,但現階段發光效率仍不足,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,相較於傳統薄膜型發光二極體,具奈米線結構之發光二極體在相同注入電流下,會因量子侷限效應而提升其發光強度。本論文採用水熱法製備N型氧化鋅奈米線,選擇氮化鎵薄膜作為P型材料則,製作成異質接面發光二極體結構,並進行其特性之研究。另一方面,氮化鎵發光二極體因菲涅爾損失(Fresnel loss)及全反射現象而降低其光萃取效率,同樣可藉由氧化鋅奈米線之應用而有所改善,故本論文於氮化鎵垂直型發光二極體之出光面,成長氧化鋅奈米線,以提升其光萃取效率。
    在P型氮化鎵薄膜/N型氧化鋅奈米線異質結構的製備上,本論文致力於元件串聯電阻的降低,以及改善漏電流現象。在降低元件串聯電阻的部份,經快速熱處理製程後,氧化鋅鋁成核層及氧化鋅鋁電流擴散層之最佳電阻率分別為7.165×10-3、2.141×10-3 Ω-cm。鋁摻雜之氧化鋅奈米線,分別使用硝酸鋁、氯化鋁及醋酸鋁做為鋁摻雜來源,由歐傑電子能譜及X光光電子能譜儀可檢測出氧化鋅奈米線有鋁的成分。在改善漏電流現象的部份,採用液態二氧化矽之溶液,旋塗在奈米線之間,並烤乾以形成薄膜,實驗結果顯示旋塗3次可以得到最佳之旋塗效果,並以RIE通CF4氣體蝕刻絕緣材料至露出奈米線表面,完成奈米線間之絕緣填充。
    在N型氮化鎵出光表面製備氧化鋅成核層/氧化鋅奈米線,以改善光萃取效率的部分,本論文於未粗化與已粗化出光表面製備氧化鋅成核層/氧化鋅奈米線。實驗結果顯示,在未粗化之N型氮化鎵表面製備氧化鋅成核層/氧化鋅奈米線,可提升氮化鎵發光二極體之光輸出功率,當氧化鋅成核層之厚度為100 nm,水熱法溶液之濃度為35 mM,在350 mA之注入電流下,氮化鎵發光二極體之光輸出功率可提升151.47 %,為最佳結果。將氧化鋅成核層/氧化鋅奈米線製備於已粗化之N型氮化鎵表面,則會略微降低其光輸出功率。此外,製備氧化鋅成核層/氧化鋅奈米線於氮化鎵發光二極體之出光表面,可改善其二極體特性,IR良率亦略微提升,顯示成長氧化鋅奈米線可以減少漏電流現象。

    Light emitting diode (LED) is considered as the major next-generation luminescence technology, but nowadays insufficient light efficiency of high power LED limits its application for illumination lighting. Some research group have developed nanowrie-inserted LED structure, and the EL intensity shows that the novel LED structure can improve light efficiency effectively. In this study, hetero-junction diode is made by N-type ZnO nanowires fabricated by hydrothermal method and P-type GaN film. Finally, the characteristics of N-type ZnO nanowires/P-type GaN structure LED will be studied. Fabricating ZnO nanowires on GaN LED can reduce the Fresnel loss and the total reflection of light, improving the light extraction efficiency of GaN LED, and it is the other research topics in this study.
    For p-GaN/n-ZnO nanowires heterostructure LED, reducing the series resistance and leakage current yield of device is the research focus in this study. After RTA process, the resistivity of AZO seedlayer and current spreading layer are 7.165×10-3 and 2.141×10-3 Ω-cm, respectively. To prepare the Al-doped ZnO nanowires, Al(NO3)3, AlCl3 and AlOH(CH3COO)2 powders were added. AES and XPS examination can confirm that the Al were successfully doped in the ZnO nanowires. In the part of reducing the leakage current yield, liquid type SiO2 (SOG, spin-on-glass) can be filled into the spare space among each ZnO nanowires, and the sequent baking process is necessary to form a solid-type isolation layer. The result of this experiment shows that the triple coating SOG is optimum for successive process. CF4 RIE process can be used to selectively etch SiO2 but remain ZnO nanowires, so that the current spreading layer (AZO) of LED could be directly deposited on the top of ZnO nanowires.
    In this study, ZnO seedlayer/ZnO nanowires was fabricated on non-texturing and texturing GaN surface. Fabricating ZnO seedlayer/ZnO nanowires on non-texturing GaN surface can significantly improve the light output power of GaN LED. When ZnO seedlayer was 1000 Å, and the mol-concentration of reaction solution was 35 mM, light output power increased by 151.47 % at an injection current of 350 mA. Fabricating ZnO seedlayer/ZnO nanowires on texturing GaN surface will Slightly decrease the light output power of GaN LED. Besides, the ZnO seedlayer/ZnO nanowires formed on texturing and non-texturing LED surface can improve IV characteristic and IR yield of LED dies.
    Keywords:light-emitting diode, ZnO nanowrie, hydrothermal method, light extraction efficiency, Al-doped ZnO nanowires

    摘要.....................................................I 總目錄...................................................V 圖目錄..................................................VII 表目錄..................................................XVII 第一章 序論 ...........................................1 1.1 前言 ...............................................1 1.2 氧化鋅材料 ..........................................3 1.2.1 氧化鋅之材料特性 ..........................3 1.2.2 氧化鋅之發光機制 ..........................4 1.3 發光二極體之簡介.....................................11 1.3.1 發光二極體之原理..........................11 1.3.2 發光二極體之發光效率.......................18 1.4 量子侷限效應 ........................................19 1.5 光損失機制...........................................28 1.5.1材料吸收以及電流分佈不均之損失.........................28 1.5.2臨界角損失...........................................29 1.5.3 Fresnel損失........................................31 第二章 文獻回顧 .........................................38 2.1 水熱法製備氧化鋅奈米線................................38 2.2 水熱法製備鋁摻雜之氧化鋅奈米線.........................55 2.3 氧化鋅奈米線/奈米柱發光二極體之製作....................67 2.3.1有機金屬化學氣相沉積法................................67 2.3.2化學氣相沉積法.......................................70 2.3.3氣相傳輸法(vapor phase transport method, VPT).......70 2.3.4電化學沉積法........................................71 2.3.5水熱法.............................................73 2.4 氧化鋅奈米線於氮化鎵出光表面之應用.....................99 2.5 研究動機與目的......................................120 第三章 實驗設計與規劃 ...................................121 3.1 氧化鋅奈米線之製備及改質.............................121 3.2 氧化鋅奈米線應用於發光二極體PN結構....................124 3.2.1 發光二極體結構設計.......................124 3.2.2 光罩設計................................126 3.2.3 異質結構氧化鋅奈米線發光二極體之製作........127 3.3 氧化鋅奈米線應用於氮化鎵發光二極體之出光表面............136 3.4 實驗設備...........................................141 第四章 實驗結果與探討 ...................................151 4.1 p-GaN/n-ZnO nanowires異質接面發光二極體製作..........151 4.1.1 氧化鋅奈米線製備.........................151 4.1.2 鋁摻雜之氧化鋅奈米線......................152 4.1.3 絕緣層填充...............................154 4.1.4 電流擴散層沉積...........................155 4.1.5 發光二極體晶粒圖案化......................155 4.1.6 P型及N型電極製備.........................157 4.2 氧化鋅奈米線應用於氮化鎵發光二極體之出光表面............176 4.2.1 溶膠凝膠法對已粗化氮化鎵試片之處理...................176 4.2.2 濺鍍法對未粗化氮化鎵試片之處理.......................178 4.2.3 濺鍍法對已粗化氮化鎵試片之處理.......................180 第五章 結論與未來展望 ................................201 5.1 結論 ..........................................201 5.2 未來展望 ...........................................203 參考文獻 ...........................................205

    1. P. X. Gao and Z. L. Wanga, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, Journal of Applied Physics, Vol. 97, pp. 044304 (2005)
    2. R. A. Swalin, Thermodynamics of Solids, John Wiley & Sons, pp. 335 (1972)
    3. S. Kohiki, M. Nishitani and T. Wada, Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms, Journal of Applied Physics, Vol. 75, pp. 20692072 (2005)
    4. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, Vol. 79, pp. 79837990 (1996)
    5. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters, Vol. 68, pp. 403405 (1996)
    6. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation, Journal of Physical Chemistry B, Vol. 104, pp. 17151273 (2000)
    7. B. Lin and Z. Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, Vol. 79, pp. 943945 (2001)
    8. 陳建隆, 發光二極體之原理與製程,全華圖書股份有限公司 (2008)
    9. D. Hull, Introduction to dislocations, Oxford (1975)
    10. S. O. Kasap, Optoelectronics and photonics: principles and practices, Pearson (2001)
    11. E. F. Schubert, Light-emitting diode, Cambridge (2003)
    12. P. N. Prasad, Nanophotonics, Wiley Interscience (2004)
    13. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, Journal of Physical Chemistry, Vol. 100, pp. 1322613239 (1996)
    14. W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Advanced Materials, Vol. 15, pp. 526529 (2003)
    15. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium, Nano Letters, Vol. 4, pp. 10591062 (2004)
    16. E. F. Schubert,”Light-emitting diodes”, 2003
    17. S. J. An, J. H. Chae, G. C. Yi and G. H. Park, Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays, Applied Physics Letters, Vol 92, pp. 121108 (2008)
    18. L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, Vol. 113, pp. 28262833 (1991)
    19. C. Pacholski, A. Kornowski and H. Weller, Self-assembly of ZnO: from nanodots to nanorods, Angewandte Chemie International Edition, Vol. 41, pp. 11881191 (2002)
    20. B. Liu and H. C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures, Langmuir, Vol. 20, pp. 41964204 (2004)
    21. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by Cetyltrimethylammonium Bromide-assisted hydrothermal process, Journal of Physical Chemistry B, Vol. 108, pp. 39553958 (2004)
    22. L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, Journal of Physical Chemistry B, Vol. 105, pp. 33503352 (2001)
    23. L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chemistry of Materials, Vol. 13, pp. 43954398 (2001)
    24. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solution, Advanced Materials, Vol. 15, pp. 464466 (2003)
    25. A. Sugunan, H. C. Warad, M. Bomanb and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine, Journal of Sol-Gel Science and Technology, Vol. 39, pp. 4956 (2005)
    26. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays, Angewandet Chemie, Vol. 42, pp. 30313034 (2003)
    27. Y. Tak and K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, Journal of Physical Chemistry B, Vol. 109, pp. 1926319269 (2005)
    28. D. Wu , M. Yanga, Z. Huang, G. Yin, X. Liao, Y. Kang, X. Chen and H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, Journal of Colloid and Interface Science, Vol. 330, pp. 380385 (2009)
    29. S. N. Bai, H. H. Tsai and T. Y. Tseng, Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method, Thin Solid Films, Vol. 516, pp. 155158 (2007)
    30. J. T. Chen, J. Wang, R. F. Zhuo, D. Yan, J. J. Feng, F. Zhang and P. X. Yan, The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process, Applied Surface Science, Vol. 255, pp. 39593964 (2009)
    31. J. B. Shim, J. W. Grant, W. R. Harrell, H. Chang and S. O. Kim, Electrical properties of rapid hydrothermal synthesised Al-doped zinc oxide nanowires in flexible electronics, Micro & Nano Letters, Vol. 6, pp. 147149 (2011)
    32. W. I. Park and G. C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Advanced Materials, Vol. 16, pp. 8790 (2004)
    33. M. C. Jeong, B. Y Oh, M. H. Ham and J. M. Myoung, Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes, Applied Physics Letters, Vol. 88, pp. 202105 (2006)
    34. M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diode, Small, Vol. 3, pp. 568572 (2007)
    35. S. H. Park, S. H. Kim and S. W. Han, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications, Nanotechnology, Vol. 18, pp. 055608 (2007)
    36. D. C. Kim, W. S. Han, H. K. Cho, B. H. Kong, and H. S. Kim, Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si, Applied Physics Letters, Vol. 91, pp. 231901 (2007)
    37. C. Y. Chang, F. C. Tsao, C. J. Pan and G. C. Chi, Electroluminescence from ZnO nanowire/polymer composite p-n junction, Applied Physics Letters, Vol. 88, pp. 173503 (2006)
    38. B. Linga, X. W. Suna, J. L. Zhaoa, S. T. Tanb, Z. L. Dongc, Y. Yanga, H. Y. Yua and K. C. Qi, Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode, Physica E, Vol. 41 (2008)
    39. R. Konenkamp, R. C. Word and C. Schlegel, Vertical nanowire lightemitting diode, Applied Physics Letters, Vol. 85, pp. 60046006 (2007)
    40. H. Guoa, J.g Zhoua and Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches, Electrochemistry Communications, Vol. 10, pp. 146150 (2008)
    41. A. Nadarajah, R. C. Word, J. Meiss and R. Knenkamp, Flexible inorganic nanowire light-emitting diode, Nano Letters, Vol. 8, pp.534537 (2008)
    42. K. H. Tam, A. M. C. Ng, Y. H. Leungt, A. B. Djurisic, W. K. Chan , and S. Gwo, ZnO nanorods by hydrothermal method for ZnO/GaN LEDs, IEEE, Optoelectronic and Microelectronic Materials and Devices, 2006 Conference on, pp. 109112 (2006)
    43. H. Sun, Q. F. Zhang and J. L. Wu, Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure, Nanotechnology, Vol. 17, pp. 22712274 (2006)
    44. E. Lai, W. Kim and P. Yang, Vertical nanowire array-based light emitting diodes, Nano Research, Vol. 1, pp. 123128 (2008)
    45. H. Sun, Q. Zhang, J. Zhang, T. Deng and J. Wu, Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction, Applied Physics B: Lasers and Optics, Vol. 90, pp. 543546 (2008)
    46. J. Zhong, H. Chen, G. Saraf and Y. Lu, Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency, Applied Physics Letters, Vol. 90, pp. 203515 (2007)
    47. M. K. Lee, C. L. Ho and P. C. Chen, Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods, IEEE Photonics Technology Letters, Vol. 20, pp. 252254 (2008)
    48. S. J. An, J. H. Chae, G. C. Yi and G. H. Park, Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays, Applied Physics Letters, Vol. 92, pp. 121108 (2008)
    49. C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao and S. Y. Chen, Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs, Electrochemical and Solid-State Letters, Vol. 11, pp. H84H87 (2008)
    50. K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park and S. W. Kim, Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution, Applied Physics Letters, Vol. 94, pp. 071118 (2009)
    51. S. Dalui, C. C. Lin, H. Y. Lee, C. H. Chao and C. T. Lee, Light output enhancement of GaN-based light-emitting diodes using ZnO nanorod arrays produced by aqueous solution growth technique, IEEE Photonics Technology Letters, Vol. 22, pp. 12201222 (2010)
    52. J. W. Kang, M. S. Oh, Y. S. Choi, C. Y. Cho, T. Y. Park, C. W. Tu and S. J. Park, Improved light extraction of GaN-based green light-emitting diodes with an antireflection layer of ZnO nanorod arrays, Electrochemical and Solid-State Letters, Vol. 14, pp. H120H123 (2011)
    53. S. H. Jeong, J. W. Lee, S. B. Lee, J. H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties, Thin Solid Films, Vol. 435, pp. 7882 (2003)
    54. T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee and J. M. Myoung, Chemical surface passivation of HfO2 films in a ZnO nanowire transistor, Nanotechnology, Vol. 17, pp. 21162121 (2006)
    55. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium, Nano Letters, Vol. 4, pp. 10591062 (2004)
    56. M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diode, Small, Vol. 3, pp. 568572 (2007)
    57. H. Y. Lee, C. T. Lee and J. T. Yan, Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN heterostructured nanorod light-emitting diodes, Applied Physics Letters, Vol. 97, pp. 111111 (2010)
    58. H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon and I. Adesida, Mechanism of nonalloyed Al ohmic contacts to n-Type ZnO:Al epitaxial layer, Japanese Journal of Applied Physics, Vol. 43, pp. 976979 (2004)
    59. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen , X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Applied Surface Science, Vol. 158, pp. 134-140 (2000)

    無法下載圖示 This full text is not authorized to be published.
    QR CODE