簡易檢索 / 詳目顯示

研究生: 曾偉鈞
Tseng, Wei-Chun
論文名稱: 回授急動度感測之撓性機械人關節主僕雙向控制
Bilateral Control of Flexible Robot Joints with IEPE Jerk Sensors
指導教授: 呂有勝
Lu, Yu-Sheng
口試委員: 王富正
Wang, Fu-Cheng
吳尚德
Wu, Shang-Teh
吳順德
Wu, Shuen-De
呂有勝
Lu, Yu-Sheng
口試日期: 2024/07/18
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 171
中文關鍵詞: 急動度急動度感測器撓性關節雙向控制
英文關鍵詞: jerk, jerk sensor, flexible joint, bilateral control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401791
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

壓電感測元件產生的電量微小,並容易受到雜訊影響,因此有Integrated Electronics Piezo-Electric(IEPE)型式感測器的發展。此型式的感測器內部整合了放大器,使得原本高阻抗的輸出變成低阻抗的輸出,提供更好的抗雜訊能力。
本研究目的為研發一IEPE型式的急動度感測器,並回授IEPE急動度感測,對撓性機械人關節進行雙向控制。本雙向控制方法藉由回授急動度訊號,以抑制關節撓性導致的抖動,達到主從兩端位置同步與力量重現的控制目標。此外,進一步擴展運動觀測器,以觀測系統的負載端位置、速度及加速度訊號,以免除負載端位置感測器的需求。
本研究採用實驗室成員研發設計之撓性關節系統平台,使用IntervalZero公司的RTX64即時作業系統,以電腦為主站,透過乙太網控制自動化技術 (EtherCAT) 連接其它從站,例如台達電子的ADC、研華的 DAC與德國Sensodrive GmbH的馬達關節。透過微軟的Visual Studio編譯環境,以C++程式語言發展控制程式。
由實驗結果可知,本研究所設計之急動度感測器可以有效地感測急動度,所設計的擴展式運動觀測器可用於觀測負載端的位置、速度與加速度。此外,本文所提出之方法能有效地改善關節撓性造成的抖動,提升系統性能。本研究以實驗的方式與其它控制方法進行比較,顯示本研究方法的有效性。

The amount of electric charge generated by piezoelectric sensing elements is very small and is easily affected by noise. Therefore, Integrated Electronics Piezo-Electric (IEPE) sensors have been developed. This type of sensor integrates an amplifier inside, turning the high-impedance output into a low-impedance output and providing better noise immunity.
The purpose of this research is to develop an IEPE jerk sensor and to feedback jerk to flexible robot joints for bilateral control. This bilateral control method suppresses vibrations caused by flexible robot joints by feeding back jerk signals, achieving the control goals of position synchronization and force reproduction. In addition, an extended kinematic observer is used to observe the load-side position, velocity and acceleration signals of the system, eliminating the necessity for a load-side position sensor.
This research uses an experimental system with flexible robot joints, which was designed and assembled by members of the laboratory. It uses the RTX64 real-time operating system of IntervalZero. The computer is used as the master station and connected to other slave stations through Ethernet for Control Automation Technology (EtherCAT), such as Delta Electronics’ ADC, Advantech's DAC and robot joints from Germany's Sensodrive GmbH. Control programs and developed in C++ programming language through Microsoft's Visual Studio integrated development environment.
Experimental results show that the IEPE jerk sensor designed in this research can effectively measure jerk, and the extended kinematic observer can be used to observe the load-side position, velocity and acceleration. In addition, the proposed method proposed in this article can effectively diminish the vibration caused by joint flexibility and improve system performance. This research compares with other control methods to show the effectiveness of this proposed method.

致謝 i 摘 要 ii ABSTRACT iii 目 錄 v 表目錄 viii 圖目錄 x 符號說明 xx 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3論文架構 4 第二章 急動度感測器之設計 5 2.1 IEPE電路架構 6 2.2直流分析 7 2.3交流分析 8 2.4 IEPE 急動度感測器電路實現 9 2.5 Jerk訊號驗證 13 第三章 實驗系統架構 16 3.1實驗平台硬體架構介紹 16 3.1.1馬達 17 3.1.2 類比數位轉換器與數位類比轉換器 18 3.1.3壓電式加速規 19 3.1.4電容式加速規 20 3.1.5力量感測器 21 3.1.6 感測器介面電路 22 3.2實驗即時系統與軟體 23 3.3訊號處理 23 第四章 系統模型與系統鑑別 31 4.1系統模型 31 4.2系統轉移函數推導 32 4.3系統鑑別 34 4.4系統參數最佳化 39 第五章 雙向控制器與觀測器之設計 45 5.1雙向控制的目標 45 5.2 剛體雙向控制器之設計 46 5.3使用位置感測器之雙向控制器設計 49 5.4使用急動度感測器之雙向控制器設計 52 5.5擴展運動觀測器之設計 57 第六章 單機位置控制實驗 59 6.1單機控制器之設計 59 6.2實驗路徑命令與性能指標 60 6.3使用剛體控制器 62 6.4使用加速度感測 66 6.5使用急動度感測與加速度感測 68 6.6使用急動度感測與運動觀測 71 6.7結語 75 第七章 雙向控制實驗 84 7.1自由運動 84 7.1.1使用剛體控制器 84 7.1.2使用馬達端與負載端的位置量測 93 7.1.3使用急動度感測 100 7.1.4使用急動度感測與負載位置估測 105 7.1.5自由運動比較 114 7.2與環境鎖固之雙向控制 117 7.3雙向控制之透明度測試 128 第八章 結論與未來展望 141 參考文獻 142 附錄A 147 A.1狀態/力量觀測器 147 A.2加速度輔助觀測器 148 A.3狀態力量觀測器與加速度輔助觀測器之測試 150 A.4使用狀態力量觀測器與加速度輔助觀測器之位置控制 154 A.5使用狀態力量觀測器與加速度輔助觀測器之力量控制 161 附錄B 168 附錄C 169

Y. Michel, R. Rahal, C. Pacchierotti, P. R. Giordano and D. Lee, “Bilateral teleoperation with adaptive impedance control for contact tasks, ” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5429-5436, July 2021.
V. Falk, T. Walther, and F.W. Mohr, Robotics and Telemanipulation. In: D.J. Goldstein and M.C. Oz (eds) Minimally Invasive Cardiac Surgery. Human Press, Totowa, NJ, 2004.
M. Tavakoli, R. V. Patel and M. Moallem, “A force reflective master-slave system for minimally invasive surgery,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, vol.3, pp. 3077-3082, 2003.
R. Saltaren, R. Aracil, C. Alvarez, E. Yime and J. M. Sabater, “Field and service applications - Exploring deep sea by teleoperated robot - An Underwater Parallel Robot with High Navigation Capabilities, ” IEEE Robotics & Automation Magazine, vol. 14, no. 3, pp. 65-75, Sept. 2007.
Y. Nagatsu and H. Hashimoto, “Bilateral control by transmitting force information with application to time-delay systems and human motion reproduction,” IEEJ J. Ind. Appl., vol. 10, no. 2, pp. 165–177, Mar. 2021.
X. Gong, L. Wang, Y. Mou, H. Wang, X. Wei, W. Zheng, and L. Yin, “Improved four-channel PBTDPA control strategy using force feedback bilateral teleoperation system,” International Journal of Control, Automation and Systems, vol. 20, no. 3, pp. 1002–1017, 2022.
D.A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robotics and Automation, vol. 9, no. 5, pp. 624–637, Oct. 1993.
N. Chopra, M.W. Spong, and R. Lozano, “Synchronization of bilateral teleoperators with time delay,” Automatica, vol. 44, no. 8, pp. 2142–2148, 2008.
M. Lee and B. Lee, “Torque control for sensor equipped motor-harmonic drive system,” Int. J. Control Autom. Syst., vol. 20, pp. 35–47, 2022.
J. Lee et al., “Nonlinear torsional stiffness analysis of harmonic drives using flexible multibody dynamics simulation,” IEEE/ASME Trans. Mechatron., 2022.
J. Narayan, M. Abbas, S.K. Dwivedy, “Transpose jacobian control of flexible joint upper limb exoskeleton system,” in Machines, Mechanism and Robotics, Lecture Notes in Mechanical Eng., R. Kumar, V.S. Chauhan, M. Talha, H. Pathak, Ed. Singapore: Springer, pp. 401–411, 2022.
B. Zhan, M. Jin, and J. Liu, “Extended-state-observer-based adaptive control of flexible-joint space manipulators with system uncertainties,” Adv. Space Res., vol. 69, no. 8, pp. 3088–3102, 2022.
Y. Zhong, Y. Pu, and T. Wang, “A sliding mode and non-linear disturbance observer based bilateral control for telerehabilitation systems with flexible manipulators,” Cogn. Robot., vol. 2, pp. 39–49, 2022.
E. Saito and S. Katsura, “Bilateral control of two-mass resonant system based on concept of multilateral control,” in Proc. IEEE Int. Symposium on Industrial Electronics, pp. 1–6, 2013.
M. Tavakoli and R.D. Howe, “Haptic effects of surgical teleoperator flexibility,” International Journal of Robotics Research, vol. 28, no.10, pp. 1289–1302, 2009.
Y. Yang, et al., “Adaptive synchronization control design for flexible telerobotics with actuator fault and input saturation,” Int. J. Robust Nonlinear Control, vol. 28, pp. 1016–1034, 2018.
Y. Li, C. Li, J. Dong, J. Li, and Y. Yin, “Composite adaptive control of teleoperators with joint flexibility, uncertain parameters, and time-delays,” IEEE Access, vol. 7, pp. 115673–115681, 2019.
Y. Yang, L. Gan, Y. Chen, and C. Hua, “Adaptive neural network control for flexible telerobotic systems with communication constraints,” J. Frankl. Inst., vol. 359, no. 10, pp. 4751–4775, 2022.
E. Nuño, I. Sarras, L. Basañez, and M. Kinnaert, “Control of teleoperators with joint flexibility, uncertain parameters and time-delays,” Rob. Auton. Syst., vol. 62, no. 12, pp. 1691–1701, 2014.
Dumanli and B. Sencer, “Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback,” Precision Eng., vol. 54, pp. 254–268, 2018.
Richard Bearee, Pierre-Jean Barre, Jean-Paul Hautier, “Vibration Reduction Abilities of Some Jerk Controlled Movement Laws for Industrial Machines,” IFAC Proceedings Volumes, vol. 38, pp. 796–801, 2005.
F. Levinzon, Piezoelectric Accelerometers with Integral Electronics. Cham, Switzerland, Springer, 2015.
Adel S. Sedra Kenneth C. Smith MICROELECTRONIC CIRCUITS FIFTH EDITION Oxford University Press New York 2004
https://www.sensodrive.de/products/torque-technology-senso-joint.php
https://filecenter.deltaww.com/Products/download/06/060203/Manual/DELTA_IA-IPC_R1-EC8124_UM_TC_20200521.pdf
https://www.advantech.com/zh-tw/products/cf678dc5-d2ea-4d58-b133-36cd65864d14/amax-4820/mod_2671210e-7a3a-452b-a8ae-5b240258e8eb
https://www.pcb.com/products?m=333b50
https://www.analog.com/en/products/adxl354.html
https://www.propii.com.tw/uploadfiles/538/burster%E5%9E%8B%E9%8C%84/8523_en.pdf
https://www.burster.com/en/sensor-electronics/amplifier-and-transmitter-modules/p/detail/9235
Y.S. Lu, H.W. Wang, and S.H. Liu, “An integrated accelerometer for dynamic motion systems”, Measurement, vol. 125, pp. 471–475, 2018.
G.J. Raju, G.C. Verghese, and T.B. Sheridan, “Design issue in 2-port network models of bilateral remote manipulation,” in Proc. IEEE Int. Conf. R. & A., 1989, pp. 1316–1321.
Y. Matsumi et al., “Oblique coordinate based micro-macro bilateral control using a piezoelectric cantilever,” in Proc. IEEE Int. Conf. Mechatron., 2013, pp. 168–173.
S. Yajima and S. Katsura, “Decoupled bilateral control based on modal space observer in master-slave systems with different masses,” Electr. Eng. Jpn., vol. 193, pp. 10–20, 2015.
Y.S. Lu and J.S. Chen, “Sliding mode control design of non-autonomous system― An experimental study,” in Proc. IEEE IECON’93, Maui, Hawaii, USA, 1993, pp. 2358–2363.
于宸斌, “急動度感測器之設計及其於諧波驅動系統之控制應用”, 國立臺灣師範大學機電工程學系碩士班 碩士論文, 2021, 10月。
J. Kim et al., “Simple and robust attainment of transparency based on two-channel control architectures using time-delay control,” J. Intell. Robot. Syst., vol. 58, pp. 309–337, 2010.
M.-Q. Le, Development of Bilateral Control for Pneumatic Actuated Teleoperation System, Ph.D. thesis, INSA de Lyon, 2011.
T. Okano, T. Nozaki, and T. Murakami, “An approach to evaluation index-based gain scheduling for acceleration-based four-channel bilateral control,” Journal of the Japanese Society for Precision Engineering, vol. 86, no. 9, pp. 720–730, 2020.
K.B. Fite, L. Shao, and M. Goldfarb, “Loop shaping for transparency and stability robustness in bilateral telemanipulation,” IEEE Trans. Rob. Autom., vol. 20, no. 3, pp. 620–624, Jun. 2004.
M. Yokoyama, R.A.B. Petrea, R. Oboe, and T. Shimono, “External force estimation in linear series elastic actuator without load-side encoder,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 861–870, Jan. 2021

無法下載圖示 本全文未授權公開
QR CODE