Author: |
于宸斌 Yu, Huan-Pin |
---|---|
Thesis Title: |
急動度感測器之設計及其於諧波驅動系統之控制應用 Design of a Jerk Sensor and Its Application to the Control of a Harmonic Drive System |
Advisor: |
呂有勝
Lu, Yu-Sheng |
Committee: |
呂有勝
Lu, Yu-Sheng 林明璋 Lin, Ming-Chang 吳尚德 Wu, Shang-Teh 蘇科翰 Su, Ke-Han |
Approval Date: | 2021/10/20 |
Degree: |
碩士 Master |
Department: |
機電工程學系 Department of Mechatronic Engineering |
Thesis Publication Year: | 2021 |
Academic Year: | 109 |
Language: | 中文 |
Number of pages: | 118 |
Keywords (in Chinese): | 急動度 、急動度感測器 、運動觀測器 、運動控制 |
Keywords (in English): | jerk, jerk sensor, kinematic observer, motion control |
Research Methods: | 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202101803 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 55 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本研究目的為研發一急動度感測器,以直接獲得急動度訊號,並設計一運動觀測器,使用所研發的急動度感測器量測到的急動度訊號,與編碼器所量測到的位置訊號,用於觀測系統的速度訊號與加速度訊號,並且進一步將運動觀測器進行改良,設計一偏壓漂移補償運動觀測器,觀測急動度感測器之輸出漂移並加以補償,改善感測器的偏壓漂移問題,以獲得更好的急動度訊號,結合所設計的線性控制器,使系統達到更好的控制性能。
本研究採用的實驗環境為實驗室內部成員共同研發設計、組裝之諧波驅動系統實驗平台,其控制核心使用美國德州儀器公司(Texas Instrument, TI)生產的TMS320C6713 DSK開發板做為數位訊號處理器(DSP),並搭配Xilinx所生產XCV-50PQ204-6C晶片為主體的可程式邏輯閘陣列(Field-Programmable Gate Array, FPGA),並以硬體描述語言(VHSIC hardware description language, VHDL)撰寫數位邏輯電路,並透過TI的編譯軟體(Code Composer Studio, CCS)發展控制程式。由實驗結果可知,本研究所設計之急動度感測器,可以量測到準確的急動度訊號,所設計的運動觀測器可以準確的觀測到系統的速度與加速度,所設計的偏壓漂移補償觀測器可以準確的觀測到感測器之偏壓漂移量,並由比較結果得知所設計之觀測器優於文獻的觀測器,結合設計的線性控制器,進一步提升系統性能。
The purpose of this research is to design a jerk sensor to directly obtain a jerk signal. A dynamic observer is also designed, which utilizes the measured jerk and position signals to observe velocity and acceleration of the system. Moreover, the bias drift of the jerk sensor’s output is estimated and compensated. Experimental study on a motion control system is conducted to achieve better control performance.
The experimental environment in this research is a harmonic drive system that was designed and assembled by members of the laboratory. The control core includes Texas Instruments (TI) TMS320C6713 DSP (digital signal processor) development board and a Xilinx XCV-50PQ204-6C-FPGA (field-programmable gate array). A digital logic circuit is designed using the VHSIC hardware description language (VHDL) and includes peripheral interfaces to ADC, DAC and shaft encoder. Meanwhile, the TI’s complier software Code Composer Studio (CCS) is used to develop control programs. Experimental results show that the jerk sensor designed in this research can measure the jerk accurately. Moreover, when combined with the designed dynamic observer, the bias drift of the sensor can be estimated and compensated while maintaining the improved control performance.
[1] Macfarlane, “Design of jerk bounded trajectories for on-line industrial robot application,” International Conference on Robotics & Automation Seoul, Korea, May. 2001.
[2] Ari Kattainen , Kenneth Kronkvist and Giovanni Hawkins, “Method of eliminating a jerk arising by accelerating an elevator car,” European Patent Application, Jan. 2015, 15152437.
[3] Sonja Macfarlane and Elizabath, “Jerk-bounded manipulator trajectory planning design for real-time application,” Transactions on Robotics and Automation., vol. 19, no. 1, Feb. 2003.
[4] N. Henmi and S. Takeuchi, “New method using piezoelectric jerk sensor to detect roller bearing failure,” Int. J. Automation Technol., vol.7, no.5, pp. 550–557, 2013.
[5] Raymond Shieh and Yu-Sheng Lu, “Jerk-Constrained Time-Optimal Control of a Positioning Servo,” International Conference on Control, Automation and Systems 2010, in KINTEX, Gyeonggi, Korea, Oct. 27-30, 2010.
[6] M. Fujiyoshi, Y. Nonomura, F. Arai, and T. Fukuda, “A new micro jerk sensor with viscous coupling,” MHS, 2002, 1058038.
[7] Erneset O. Doebelin, “Measurement systems application design,” Fourth edition, McGraw-Hill Publishing Company, America, 1990.
[8] N. Henmi et al., “A study of piezoelectric jerk sensor,” in Proc. JSPE Semestrial Meeting, 2008 JSPE Spring Conference, Session ID F74, Sept. 2008, vol. 2008S, pp. 515–516.
[9] A. Dumanli and B. Sencer, “Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback,” Precision Engineering, vol. 54, pp. 254–268, 2018.
[10] N. Henmi, K. Yoshimura, M. Tanaka, and M. Yamak, “A piezoelectric jerk sensor – performance of prototype sensor –,” Trans. Japan Soc. Automotive Engineers, vol.41, pp. 425–430, Mar. 2010.
[11] N. Tanaka, H. Q. Nguyen, and N. Henmi, “Characteristics of the piezoelectric jerk sensor,” in Proc. 8th International Conference on Positioning Technology Nov. 28, 2018, #1037.
[12] J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, Boca Raton, CRC Press, Dec. 2017.
S.-L. Chena, X. Li , C. S. Teo, K. K. Tan, “Composite jerk feedforward and disturbance observer for robust tracking of flexible systems,” Automatica, vol. 80, pp. 253–260, 2017.