簡易檢索 / 詳目顯示

研究生: 蔡仲彬
Tsai chuen-bin
論文名稱: 國中生無理數之概念感及情意現象
指導教授: 謝豐瑞
Hsieh, Feng-Jui
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 220
中文關鍵詞: 無理數概念感情意現象國中
英文關鍵詞: Irrational numbers, Conceptual feeling, Affective domain, Junior High School
論文種類: 學術論文
相關次數: 點閱:326下載:99
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘 要
本研究的目的在探討國中學生學習過方根與π後,對方根和π所具有的本質屬性及特質之概念認知與情意現象、對於方根和π與相關概念聯結時所呈現的思維彈性;以及將方根與π的認知擴充至無理數本質屬性與特質的學習遷移情形。
本研究為描述性研究,主要是透過問卷調查及訪談,收集量與質的資料。此研究以學習過方根和π的國中生為研究對象,樣本共計2077名國中二、三年級的學生。
本研究的主要發現如下:(1)國中學生對方根和π所具有的無理數心像仍有高比例的迷思,例如方根和π是不是大小固定的數?有沒有在數線上?是否等於某有限小數等等。在表達有關方根和π的概念時,只有少數學生能以較完整的敘述表達看法,多數都以片段、不完整的概念來敘述並以簡短的敘述來表達。無理數感知部分,超過半數學生認為無理數存在於身高及時間量中。(2)許多學生對於在圖形幾何、坐標幾何、代數符號等領域的概念中出現無理數並不能接受;至於無理數概念的垂直遷移只有少數學生能夠達到。(3)當學生的思維物件中有無理數時,由於對其本質及特質的不熟悉,多數學生需要將此新數類的思維切換成一具體可掌握的數,而只有少數學生思維彈性的張力可以到達無理數的高階概念;對於π則常以國小經驗的數值憶取作為思維的內容。(4)多數學生對方根和π的存在覺得神秘與驚奇,同時可感受到古人的智慧;也有不少學生面對方根的學習內容覺得無趣,對於生活中出現方根則傾向存疑或盡量避開的態度;但多數學生認同學習方根是為其它數學單元做準備,也覺得應該要學習簡單的根式化簡。雖然只有半數學生滿意自己的學習表現但對自己若用功會有更好的表現有很高的自我信念。學習經驗上,多數學生曾以計算機按出過根號的值;然而雖然約半數教師曾經以計算機檢驗過根式乘法,但仍有不少學生懷疑其等號關係。

目 錄 第壹章 緒 論……………………………………… 楔 子…………………………………………… 第一節 研究動機與背景………………………… 第二節 研究目的………………………………… 第三節 名詞界定………………………………… 第貳章 文獻探討…………………………………… 第一節 無理數的天空……………………………… 第二節 數學概念的認知與發展…………………… 第三節 無理數學習的相關研究…………………… 第四節 情意領域在數學學習的研究……………… 第參章 研究方法…………………………………… 第一節 研究架構…………………………………… 第二節 研究方法與研究設計……………………… 第三節 研究樣本…………………………………… 第四節 研究工具…………………………………… 第五節 研究過程……………………………………… 第六節 研究限制……………………………………… 第肆章 結果分析與討論……………………………… 第一節 資料分析與報導的處理簡介………………… 第二節 主體認識部分………………………………… 第三節 概念聯結與學習遷移部分……………………… 第四節 思維彈性部分…………………………………… 第五節 情意現象部分…………………………………… 第伍章 結論與建議………………………………………… 第一節 綜合性結論………………………………………… 第二節 看法與建議………………………………………… 第三節 結語………………………………………………… 參考文獻……………………………………………………… 中文部分……………………………………………………… 英文部分……………………………………………………… 附 錄………………………………………………………… 附錄一:調查問卷注意事項(教師版)……………………… 附錄二:國中生對 無理數的概念認知及情意問卷(A、B卷). 附錄三:國中生對無理數的概念認知問卷(A、B卷)之詳細統計表(包含內文中以簡表呈現的部分)………………..… 附錄四:研究樣本之詳細年級、數學能力及性別的人數分佈… ﹏﹏全文完﹏﹏ 表 次 圖表編碼說明:各碼依次為章、節、表(或圖)的序號,例如:表4-2-3意思為此表是第四章第二節的第3個附表。 1. 表3-3-1:問卷施測樣本之分布與人數統計表…………………………. 2. 表3-4-1:情意問卷架構表………………………………………………. 3. 表4-1-1:研究資料之編碼符號的舉例說明……………………………. 4. 表4-2-1:心像中什麼數有平方根之簡要統計表………………………. 5. 表4-2-3:π的心像勾選類型統計表……………………………………. 6. 表4-2-4: 的心像勾選類型統計表…………………………………… 7. 表4-2-5:無理數與未知數 的聯結(簡表)………………….………. 8. 表4-2-6:個別無理數的心像勾選統計表(題目與簡表並呈)…….... 9. 表4-2-7a:心像中有沒有自己乘自己後會得到2的數……………… 10. 表4-2-7b:心像中怎樣的數自己乘自己後會得到2…………………. 11. 表4-2-8:平方根與數線的聯結(簡表)………………………………… 12. 表4-2-9:立方根與數線的聯結(簡表)………………………………… 13. 表4-2-10:無理數在高次方根的垂直遷移(簡表)……………………. 14. 表4-2-11:身高情境的表達…………………………………………… 15. 表4-2-12:平方根概念的表達a………………………………………. 16. 表4-2-13:平方根概念的表達b………………………………………. 17. 表4-2-14:平方根聯結數線的表達…………………………………… 18. 表4-2-15:立方根聯結數線的表達…………………………………… 19. 表4-2-16:無理數常見例的表達……………………………………… 20. 表4-2-17:根式加法運算合理性的表達……………………………… 21. 表4-2-18:根式乘法運算合理性的表達……………………………… 22. 表4-2-19:無理數在高次方根垂直遷移的表達……………………… 23. 表4-2-20:無理數在身高情境中的連續感之統計表………………… 24. 表4-2-21:無理數在時間情境中的連續感之統計表………………… 25. 表4-2-22:線段長的感知統計表……………………………………… 26. 表4-2-23:稠密性感知統計表………………………………………… 27. 表4-2-24:幾何聯結中的方根需求與倍數感知統計表……………… 28. 表4-2-25:根式內數值等差的大小感知統計表…………………..…. 29. 表4-2-26:根式加法運算的感知統計表……………………………... 30. 表4-2-27:根式乘法運算的感知統計表……………………………... 31. 表4-3-1:無理數之正方形邊長聯結(簡表)…………………….… 32. 表4-3-2:無理量之各幾何維度的聯結(簡表)………………….… 33. 表4-3-3:無理量與直角三角形邊長的聯結……………………….… 34. 表4-3-4:無理數之三角形縮放倍數的聯結(簡表)…………….… 35. 表4-3-5:無理數與相似三角形成比例邊長的聯結…………………. 36. 表4-3-6:個別無理數聯結到數線的對應點(簡表)………………. 37. 表4-3-7:平方根與數線的聯結………………………………………. 38. 表4-3-8:立方根與數線的聯結………………………………………. 39. 表4-3-9:無理數與平面坐標上的直線………………………………. 40. 表4-3-10:無理數與未知數 的聯結………………………………… 41. 表4-3-11:無理數與係數符號a的聯結……………………………… 42. 表4-3-12:幾何圖形中無理數量的學習遷移(簡表)……………… 43. 表4-3-13:心像中什麼數有平方根之統計表(簡表)……………… 44. 表4-3-14:無理數在高次方根的垂直遷移…………………………… 45. 表群4-5-1:學習方根之相關態度的統計表(含7個子表)……….. 46. 表4-5-2:『方根』解決了生活上的問題之答型統計…………………. 47. 表4-5-3:情意題之方根與生活的其它反應之描述分類…………….. 48. 表4-5-4: 、 都表示相同的值3之答型………………………. 49. 表4-5-5:情意題之方根與一數多形的其它感覺之描述分類……….. 50. 表群4-5-6:學習方根之相關信念(含7個子表)………………….. 51. 表4-5-7:中學生對數值型表徵之無理數的信念分析表…………….. 52. 表群4-5-8:學習方根之相關經驗(含4個子表)………………….. 53. 表4-5-9:學生處理生活情境中有根號數時的反應統計表………….. 54. 表4-5-10:開放式經驗情境描述類型統計表…………………………. 圖 次 1. 圖2-2-1:皮亞傑認識的螺旋圖………………………………………. 2. 圖2-2-2:概念的圓錐形結構模型……………………………………. 3. 圖2-2-3:概念與舉例及屬性間的關係………………………………. 4. 圖2-2-4:概念共鳴與理解……………………………………………. 5. 圖2-2-5:概念定義與概念心像間的互動……………………………. 6. 圖2-2-6:學習活動中的非認知因素作用圖…………………………. 7. 圖2-2-7:學生認知結構中的作用因子圖……………………………. 8. 圖3-1-1:無理數概念模型與本研究之數學主體的示意圖…………. 9. 圖3-1-2:研究架構圖示………………………………………………. 10. 圖3-4-1:主體認識之題目分配圖示…………………………………. 11. 圖3-4-2:主體與其它概念聯結之題目分配圖示……………………. 12. 圖3-4-3:學習遷移之題目分配圖示…………………………………. 13. 圖3-4-4:情意部分之題目分類圖示…………………………………. 14. 圖3-4-5:思維彈性之題目分配圖示…………………………………. 15. 圖3-5-1:研究過程的流程圖…………………………………………. 16. 圖4-3-1:無理數相關概念聯結之示意圖…………………………… 17. 圖4-3-2:學習遷移之題目分配圖示………………………………… 18. 圖4-4-1:思維彈性研究圖示………………………………………… 19. 圖4-5-1:情意探討之主要面向圖示………………………………… 20. 圖表5-1-1:學生對無理數在現實情境或數學概念中的感知百分比 21. 圖表5-1-2:無理數之聯結題中學生勾選完全正確的百分比………. 22. 圖表5-1-3:進行學習遷移的人數百分比…………………………….

重要參考書目
一、中文部分
1. Austin, J.L.(1962):Sense and Sensibilia. 感覺和所感覺的事物(陳瑞麟譯,民86)。台北:桂冠圖書公司。
2. Beckmann, P.(1971):A History of π. π的故事(姜家齊、朱建正、林聰源 譯,民85)。台北:凡異出版社。
3. Blatner, D.(1999):The joy of π.神奇的π(潘恩典 譯,民88)。台北:城邦出版集團。
4. Freudenthal,(1973):Mathematics as an educational task.作為教育任務的數學(陳昌平 唐瑞芬等譯,民84)。上海教育出版社。
5. Howard Eves(1953):An introduction to the history of mathematics. 數學史概論(歐陽絳 譯,民82)。台北:曉園。
6. Kline,M.(1980):Mathematics The loss of Certainty. Oxford university press.數學:確定性的喪失(李宏魁 譯,民88)。湖南科學技術出版社。
7. Kline,M.(1972):Mathematical thought from Acient to Modern Time. 數學史-數學思想的發展( 林炎全 等譯,民72)。台北:九章出版社。
8. Lorce, M.R.(1970):洛氏教育心裡學(張春興 汪榮才 譯,民71)。台北市:大聖書局。
9. Michael, G.(1998): How to think like Leonardo da Vinci.7 Brains(劉蘊芳 譯,民88)。台北:大塊文化出版社。
10. Morries,R.(1997):Achilles in the Quantum Universe:the Definitive History of Infinity.無限探索無限(黃逸華 譯,民87)。台北:新新聞文化事業。
11. Patton,M.Q.(1991):Qualative Evaluation and Research Methods .London: SAGA Publication 質的評鑑與研究 (吳芝儀、李奉儒 譯,民84)。桂冠心裡學叢書。
12. Skemp, R. (1987):數學學習心理學(陳澤民譯,民84)。台北:九章出版社。
13. Skemp, R. (1989):小學數學教育-智性學習(許國輝 譯,民84)。香港公開進修學院出版社 。
14. Tomas,R.B.(1980):The Right Brain-A new understanding of the unconscious mind and it's creative powers.pubilshed by Ancher press.右腦與創造 (傅世俠 夏佩玉 譯,民84)。台北:凡異出版社。
15. Vygotsky,L.S.(1934):Thought and Language. 思維與語言(李維 譯,民87)。台北:桂冠圖書公司。
16. Vygotsky,L.S.(1938): Mind in society. 社會中的心智(蔡敏玲 陳正乾 譯,民86)。心理出版社。
17. 王仲春 等(民84):數學思維與數學方法論。台北:建宏出版社。
18. 王昌銳 譯(民69):連分數(Olds C.D.原著:Continued Fractions)。台北:徐氏基金會出版社。
19. 王郁華(民85):台灣南區中學數學科教師信念之研究。高雄師範大學數學研究所碩士論文。
20. 左太政(民86):溶入式數學史教學之成效研究。國科會計畫編號NSC86-2513-S017-008。
21. 田万海(民81):數學教育學。浙江教育出版社。
22. 朱綺鴻(民88):現職教師對教導數學歸納法意見初探。台灣師範大學科教研究所博士論文。
23. 李兆華(民84):中國數學史。中國文化史叢書。台北:文津出版社。
24. 李繼閔(民81):《九章算術》及其劉徽注研究。台北:九章出版社。
25. 林義雄(民75):高數2:整數系、有理數系。台北:九章出版社。
26. 林義雄(民76):高數3:實數系。台北:九章出版社。
27. 施良方(民85):學習理論。台北:麗文文化公司。
28. 施盈蘭(民84):五專生的三角函數學習現象。台灣師範大學數學研究所碩士論文。
29. 胡作玄(民86):引起紛爭的金蘋果:哲人科學家 康托爾。台北:業強出版社。
30. 胡炯濤(民85):數學教學論。馬忠林 主編 。廣西教育出版社。
31. 孫振青(民71):知識論。台北:五南圖書出版社。
32. 張春興(民80):張氏心理學辭典。台北:中華書局。
33. 張景中(民85):數學與哲學。台北:九章出版社。
34. 郭思樂 喻緯(民86):數學思維教育過程論。上海教育出版社。
35. 郭夢瑤(民84):語彙在列代數式問題所扮演的角色。台灣師範大學數學研究所碩士論文。
36. 陳慶芳(民88):國中生初學正負數加減運算的解題情形。台灣師範大學數學研究所碩士論文。
37. 華羅庚(民79):華羅庚科普著作選集。台北:亞東書局。
38. 楊淑芬(民81):從皮亞傑的認識論談術學史與數學教育的關聯。台灣師範大學數學研究所碩士論文。
39. 劉鈍(民80):大哉言數。國學叢書。遼寧出版社。
40. 蔡仲彬 謝豐瑞(民89):學生教師的無理數觀。中華民國第十六屆科學教育學術研討會 短篇論文彙編 pp.259-266。
41. 鄭君文、張恩華(民85):數學學習論。馬忠林 主編。廣西教育出版社。
42. 鄭英豪(民88):學生教師數學教學概念的學習:『以啟蒙例概念』的數學概念為例。台灣師範大學數學研究所博士論文。
43. 羅素(B.Russell)(1912):哲學問題。(劉福增 譯註,民86)。台北:心理出版社有限公司。
44. 蘇惠娟(民87):高雄地區國二學生方根概念及運算錯誤類型之分析研究。高雄師範大學數學研究所碩士論文。
二、西文部分
1. Arcavi,A.,Bruckheimer,M.&Ben-zvi.(1987).History of Mathematics for Teachers:the Case of Irrational Numbers. For the learning of mathematics,7,2.pp.18-23.
2. Arthur, F.C.(1995).A case for connections. Connecting mathematics across the curriculum/1995YearBook. edited by Peggy A.H.&Arthur F.C.pp.3-12.
3. Austin, J.L.&Howson, A.G.(1979). Language and Mathematical Education. Educational studies in mathematics, 10,pp.161-197.
4. Berdot, P.,Blanchard-laville C.&Bronner, A.(2001).Mathematical knowledge and its relation to the knowledge of mathematics teachers:The linked traumas and resonances of identity.For the learning of mathematics,21,1,Canada,pp2-11.
5. Billstein, R.,et al. (1987). Mathematics for elementary school teachers. The Benjamin/Cummings Publishing Company, p.332.
6. Bloom,B.S.Krathwohl,D.R.&Masia,B.B.(1964).Taxonomy of Educational Objectives:The classification of educational goals.Handbook2.Affective Domain.N.Y.:McKay,pp.176-185 .
7. Cajori, F.(1928).A History of Mathematical Notations.Printed by The university of Chicago press,U.S.A.
8. Crowley, M.L.(1987). Van Hiele model of the development of geometric thought.Learning and teaching geometry ,K-12.NCTM.1987year book, USA.pp.1-16.
9. Courant,R.&Robbins,H.(1996).What is mathematic? New York, Oxford university press.
10. Dickson, L.,Brown, M.&Gibson, O.(1984 ).Language-Words and Symbol. Children learning mathematics:Ateacher's guide to recent research.Printed in Great Britain by Alden Press Ltd,Oxford.
11. DiSessa,A.(1987).Phenomenology and Evoluation of Intuition.Problems of representation in the teaching and learning of mathematics.Edited by Claude Janiver,pp.33-40.
12. Dossey, J.A.,(1992).The nature of mathematics:its role and its influence.In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (N Y:Macmillan),pp.83-96.
13. Dyson, J.(1988) .Infinite In All Direction .Printed in England by Claya Ltd. pp.14-34.
14. Fennema, E.,& Franke, M.,(1992). Teachers' knowledge and its impact. In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (N Y:Macmillan),pp.147-164.
15. Fischbein, E., Jehiam, R., and Cohen, D.,(1995). The concept of irrational numbers in high-school students and prospective teachers. Educational studies in mathematics 29,pp.29-44.
16. Fischbein,E.,(1987) Paradigmatic Models .Intuition in Science and Mathematics :Aneducational approach. Dordrecht, The Netherlands:Reidel. pp.143-153.
17. Fischbein,E.,(1996) The psychological nature of concepts.Mathematics for tommorrow'syoung children.Edited by Mansfield ed al.Printed in the Netherlands.pp.102-119.
18. Fischbin, E., Tirosh, D., & Melamed, U.,(1981). Is it possible to measure the intuitiive acceptance of a mathematical statement? Educational studies in mathematics 12,pp.491-512.
19. Fischbin, E., Tiroshm, D. & Hess, P.,(1979). The intuition of infinity, Educational studies in mathematics 10,pp.3-40.
20. Gagne,R.M.(1985). The Condition of Learning. 4th ,New York.
21. Goldin,A.(1987).Cognitive Representational Systems for Mathematical problem solving.Problems of representation in the teaching and learning of mathematics.Edited by Claude Janiver,pp.125-145.
22. Hans, R.& Otto, T.(1957).The Enjoyment of Mathematics. translated by Herbert Zuckerman. Princeton Univ,press.
23. Hart, K.M.(1981). Hierarchies in mathematics education. ESM, V12.2,pp. 205-218.
24. Heath,S.T.(1981).A History of Greek Mathematics. New York:Dover.
25. Herbst,P.(1997).The number-line metaphor in the Discourse of a textbook series.For the learning of mathematics.17(1),pp.17-25.
26. Hershkowitz, R.(etc)(1990).Psychological aspects of learning geometry. Edited by Pearla Nesher &Jeremy Lilpatrick, Mathematics and Cognition ,N.Y.Cambridge university press.
27. Hershkowitz, R.,Vinner,S.&Bruckheimer,M.(1987).Activities with teachers based on cognition research.Learning and teaching geometry K1-12, Lindquist&Shulte(Eds),(1987 Year book of NCTM,pp.222-235).
28. Hiebert, J., & Carpenter, T., (1992). Learning and teaching with understanding . In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (New York:Macmillan),pp.65-9.
29. History in Mathematics Education(2000). Kluwer Academic Publishers.
30. Hitchcock, G.(1996).Dramatizing the birth and adventures of mathematical concepts: Two Dialogues. Vita Mathematica. Edited by Calinger R.,Published by The mathematical association of America.
31. Janvier,(1987).Conceptions and representation:The Cirle as an example. Problems of representation in the teaching and learning of mathematics. Edited by Claude Janiver,pp.147-158.
32. Kaput,J.J.(1987) .Representation Systems and Mathematics.Problems of representation in teaching and learning mathematics.Edited by Claude Janvier:Lawrence Erlbaum,Hillsdale,NJ.pp.19-26.
33. Kaput,J.J.(1989).Linking representations in the symbol systems of Algebra. Research issues in the learning and teaching of Algebra. Edited by Wagner S.&Kieran C.,pp.167-194.
34. Laborde,C.(1990).Language and mathematics. Edited by Pearla Nesher &Jeremy Lilpatrick, Mathematics and Cognition. N.Y.Cambridge university press, pp.53-69.
35. Lesh et al.(1987). Representations and Translations among representations in mathematics learning and problem solving. Problems of representation in the teaching and learning of mathematics.Edited by Claude Janiver,pp.33-40.
36. Mason,J.(1987).What do symbols represent? Problems of representation in the teaching and learning of mathematics. Edited by Claude Janiver,pp.73-81.
37. Mcleod, D.B. (1985).Affective issues in research on teaching mathematical problem solving in E.A. Silver(Ed), Teaching and learning mathematical problem solving:Multiple research perspective, Hillsdale, N.J :,Erlbaum. R. Hershkowitz,pp.267-279.
38. Mcleod, D.B. (1989) .Beliefs,Attitudes,and Emotions:Affective factors in mathematics learning. PME-X1,pp.170-180.
39. Mcleod,D.B.(1992).Research on affect in mathematics education:A reconceptualization. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (New York:Macmillan),pp.575-596.
40. National Council of Teachers of mathematics. (1986).Estimation and mental computation. Yearbook of 1986.printed in USA.
41. National Council of Teachers of mathematics.(1990). Principles and Standards for School Mathematics. printed in USA.
42. National Council of Teachers of mathematics.(2000).Principles and Standards for School Mathematics. printed in USA..
43. Peled, I., & Hershkovitz, S., (1999). Difficulties in knowledge integration: revisiting Zeno's paradox with irrational numbers. Int.J.mathematic.Educ. Scl.Technol 30,1,pp.39-46.
44. Pines,A.L.(1980). A model for program development and evaluation: The formative role of summative evaluation and research in science education.Paper presented at the annual conference of the international congress for individualized industruction(12th,Windsor,Canada)
45. Principles and Standards for School Mathematics.(2000). Etided by NCTM.
46. Resnick, L.B.&Ford, W.W.(1984). Brunner and the cognitive representation of mathematical concepts.The psychology of mathematics for instruction. Lawrence Erlbaum Associates, Publishers, London, pp.110-116.
47. Romberg, T.A.(1992).Perspectives on Scholarship and Research Methods. In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (N Y:Macmillan),pp.49-64.
48. Sfard, A.(1991) . On the dual nature of mathematical concepts:Reflections on processes and objects as different sides of the same coin. Educational studies in mathematics ,22:pp.1-36.
49. Skemp, R.(1982). Understanding the symbolism of mathematics.(special issue). Visible Language,16(3).
50. Someeren et al.(1998). Learning with Multiple Representations.edited by Someren et al.Elsenvier Science Ltd.
51. Stevin,S.(1634).Treatise on Incommensurable Magnitudes,Les Oeuvres Mathematiques,Leyden,Editions A.Girard.
52. Tall,D.O.&Vinner,S.,(1981),Concept image and concept definition in mathematics with particular reference to limits and continuity. E.S.M.,12(2),pp.151-169.
53. Tall,D.O. (1991).Advanced mathematical thinking. Kluwer Academic Publishers, Netherlands.
54. Tall,D.O. (1992). The transition to advanced mathematical thinking: functions, limits infinity and proof . In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (New York:Macmillan), pp.495-511.
55. Thompson, A. (1992). Teachers' beliefs and Conceptions. In D. A.Grouws(ed.) Handbook of Research on Mathematics Teaching and Learning (New York:Macmillan) ,pp.127-146.
56. Vergnaud,(1997). The Nature of Mathematical Concepts. Learning and teaching Mathematics-An international Perspective. Edited by Terezinha , N.&Peter, B.,Psychology press Ltd.
57. Vinner, S.(1983). Concept definition, Concept image and the notion of funtion.International Journal of mathematical Educztion in Science and Technology,14,pp.239-305.
58. Vinner, S.(1991).The role of definitions in the teaching and learning of mathematics. In D. Tall (ed.) Advanced mathematical thinking.,pp.65-81.
59. von Glasersfeld,E.(1987).Preliminaries to any theory of representation Problems of representation in the teaching and learning of mathematics. Edited by Claude Janiver,pp.215-225.

QR CODE