簡易檢索 / 詳目顯示

研究生: 劉奕君
論文名稱: 利用合作式基因最佳化法之機器人路徑規劃
Path Planning for Robot Navigation Based on Cooperative Genetic Optimization
指導教授: 許陳鑑
Hsu, Chen-Chien
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 路徑規劃基因演算法機器人app
英文關鍵詞: path planning, genetic algorithm, robot, app
論文種類: 學術論文
相關次數: 點閱:160下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器人路徑規劃功能需考慮:最短路徑、避免與障礙物碰撞、平滑的路徑以及快速的運算處理,基本上是一最佳化的問題。故本論文提出一最佳路徑規劃的作法,利用基因演算法(Genetic Algorithm)所具備之最佳化搜尋能力,配合菁英化策略與路徑優化處理,有效提高收斂效率以及導航成功率。實驗結果證明,本論文所提出的路徑規劃法有效改進了傳統基因演算法,實現更安全、更高效率的機器人路徑規劃。以及考慮到近年來智慧型手機應用程式的普及化,本文將改良後的基因演算法實現在Android系統並應用於室內行動機器人導航,發展出讓人類與機器人的互動更為貼近的室內行動機器人導航App。

    Path planning for mobile robots needs to consider several issues including the shortest path, obstacle avoidance, and computation efficiency, which can be regarded as an optimization problem. Taking advantage of the genetic algorithms to solve various optimization problems, this paper first proposes a Cooperative Genetic Optimization (CGO) Algorithm, including the establishment of an elite policy and larger selection region to minimize the occurrence of local optima so as to increase the speed of convergence. Based on the proposed CGO, a global path planning approach for robots is then presented. As a result, the proposed method leads to a better performance to reach the goal in terms of a safer and shorter path in comparison with the traditional genetic algorithm. Considering of App development is very popular recently. In this paper, App based development of robots path planning using Cooperative Genetic Optimization is a great contribution and innovation for development of indoor mobile robot navigation.

    摘   要 i ABSTRACT ii 致   謝 iii 目   錄 iv 圖 目 錄 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究方法回顧 2 1.3 論文架構 4 第二章 文獻探討 5 2.1. 路徑規劃 5 2.1.1 A* 演算法 5 2.1.2多尺度 A* 演算法 7 2.2. 基因演算法 10 2.2.1菁英化基因演算法 13 2.2.2並行菁英化基因演算法 16 2.2.3共生基因演算法 19 第三章 合作式基因最佳化法以及其在路經規劃之應用 21 3.1 合作式基因最佳化法(Cooperative Genetic Optimization)概述 21 3.2 基於合作式基因最佳化法之路徑規劃 24 第四章 實驗平台簡介 31 4.1 實驗系統 31 4.1.1 Android 31 4.1.2 Android SDK 34 4.2 實驗設備 35 4.2.1手持式智慧型裝置 35 4.2.2行動機器人裝置 37 4.3 實作介面控制流程 39 第五章 實驗結果 40 5.1 實驗環境 40 5.2 模擬結果 42 5.3 實驗結果 49 第六章 結論 55 參 考 文 獻 56 自  傳 60 學 術 成 就 61   圖 目 錄 圖1- 1 Multi-scale Search[5] 3 圖2- 1 A* Algorithm的虛擬碼 6 圖2- 2 Dijkstra模擬結果 7 圖2- 3 A*模擬結果 7 圖2- 4 尺度切割概念 8 圖2- 5 Multi-Scale虛擬碼[10] 8 圖2- 6執行一般A* Algorithm的結果[5] 9 圖2- 7 使用Multi-Scale Search後的結果[5] 9 圖2- 8 交配法[12] 11 圖2- 9 突變法[13] 11 圖2- 10 GA演化流程圖 13 圖2- 11 EGA演化流程圖 14 圖2- 12 EGA收斂曲線 15 圖2- 13 EGA執行100次之中的區域最佳解次數 16 圖2- 14 PEGA演算流程圖 17 圖2- 15 PEGA模擬結果 18 圖2- 16 (a)突變前 (b)突變後 18 圖2- 17 CCGA演算概念 19 圖2- 18 CCGA演化流程 19 圖2- 19 CCGA虛擬碼[24] 20 圖3- 1 CGO演化流程圖 22 圖3- 2 CGO收斂情況 23 圖3- 3 八方位點 24 圖3- 4 CGO之路徑規劃 25 圖3- 5 路徑優化流程 26 圖3- 6 CGO路徑規劃結果 27 圖3- 7 執行刪除節點判斷流程 27 圖3- 8 最終路徑 27 圖3- 9 刪除不必要節點後的成本值變化 28 圖3- 10 CGO的單樓層規劃 29 圖3- 11 起點與終點位於不同樓層時之規劃架構 30 圖3- 12 多樓層路徑規劃 30 圖4- 1 Android系統架構圖[27] 32 圖4- 2 Android SDK 開發環境介面 34 圖4- 3 2014年與2018年智慧型手機平台之市占率預估[30] 35 圖4- 4 Pioneer 3-DX 37 圖4- 5 Pioneer 3-DX機身構造及規格 38 圖4- 6 整體系統架構圖 39 圖5- 1 模擬場地 40 圖5- 2 科技大樓5F模擬場景 41 圖5- 3 行動載具系統執行機構圖 42 圖5- 4 模擬結果 43 圖5- 5 實驗座標點 46 圖5- 6 EGA與CGO之執行狀況 44 圖5- 7 PEGA與CGO之執行狀況 45 圖5- 8 模擬結果 48 圖5- 9 操作畫面步驟 50 圖5- 10 CGO演算法實現結果 54  表 目 錄 表4- 1 ASUS Nexus7 規格表[31] 36 表4- 2 Pioneer 3-DX規格表[33] 38 表5- 1 EGA、PEGA與CGO各數據比較 45 表5- 2 詳細座標位置 49

    [1] C. Petres, Y. Pailhas, P. Patron,Y. Petillot, J. Evans, and D. Lane, “Path Planning for Autonomous Underwater Vehicles,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 331-341, Apr. 2007.
    [2] I. Mas and C. Kitts, “Obstacle Avoidance Policies for Cluster Space Control of Nonholonomic Multirobot Systems,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 6, pp. 1068-1079, Dec. 2012.
    [3] C. Keonyup, L. Minchae, and S. Myoungho, “Local Path Planning for Off-Road Autonomous Driving With Avoidance of Static Obstacles,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1599-1616, Dec. 2012.
    [4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol.4, no. 2, pp. 100-107, July. 1968.
    [5] Y. Lu and X. Huo, “Incremental Multi-Scale Search Algorithm for Dynamic Path Planning With Low Worst-Case Complexity,” IEEE Transactions on Systems, vol. 41, no. 6, pp. 1556–1570, Dec. 2011.
    [6] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. Michigan Press, 1975.
    [7] H.C. Lau, T.M. Chan, W.T. Tsui, and W.K. Pang, “Application of genetic algorithms to solve the multidepot vehicle routing problem,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 383–392, Apr. 2010.
    [8] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol.1, no.1, pp 269-271, 1959.
    [9] http://en.wikipedia.org/wiki/A*_search_algorithm
    [10] Y. Lu and X. Huo, “A Beamlet-Based Graph Structure for Path Planning Using Multiscale Information,” IEEE Transactions on Automatic Control, vol. 57, no. 5, pp. 1166–1178, May. 2012.
    [11] X. Huayang and Z. Mengjie, “Parent Selection Pressure Auto-Tuning for Tournament Selection in Genetic Programming,”, IEEE Transactions on Evolutionary Computation, vol. 17, no. 1, pp. 1-19, Feb. 2013.
    [12] http://www.scielo.br/scielo.php?pid=S0104-66322008000400017&script=sci_arttext
    [13] http://biology.about.com/od/basicgenetics/ss/gene-mutation.htm
    [14] T.W. Manikas, K. Ashenayi, and R.L. Wainwright, “Genetic Algorithms for Autonomous Robot Navigation,” IEEE Instrumentation & Measurement Magazine, vol. 10, no. 6, pp. 26–31, Dec. 2007.
    [15] N. Xie and H. Leung, “Reconstruction of Piecewise Chaotic Dynamic Using a Genetic Algorithm Multiple Model Approach,” IEEE Transactions on Circuits and System, vol. 51, no. 6, pp. 1210–1222, June. 2004.
    [16] E.A.M. Cruz and A.S. Morris, “Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace,” IEEE Transactions on Robotics, vol. 22, no. 4, pp. 613–624, Aug. 2006.
    [17] F. Benavides, G. Tejera, M. Pedemonte, and S. Casella, “Real Path Planning based on Genetic Algorithm and Voronoi Diagrams,” IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications, Bogota, Oct. 2011, pp. 1–6.
    [18] M. Gemeinder and M. Gerke, “GA-based path planning for mobile robot systems employing an active search algorithm,” Appl. Soft Comput., vol. 3, no. 2, pp. 149-158, Sep. 2003.
    [19] Cen. Zeng, Qiang. Zhang, and Xiaopeng. Wei, “GA-based Global Path Planning for Mobile Robot Employing A* Algorithm,” Journal of computers, vol. 7, no. 2, pp. 470–474, Feb. 2012.
    [20] Y. Zhang, L. Zhang, and X. Zhang, “Mobile Robot Path Planning Base on the Hybrid Genetic Algorithm in Unknown Environment,” International Conference on Intelligent Systems Design and Applications, Kaohsiung, Nov. 2008, pp. 661–665.
    [21] C.C. Tsai, H.C. Huang, and C.K. Chan, “Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4813–4821, Oct. 2011.
    [22] A.W. Iorio and X. Li, “A Cooperative Coevolutionary Multiobjective Algorithm Using Non-dominated Sorting,” Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June. 2004, pp. 537–548.
    [23] V.D.L Cueva and F. Ramos, “Cooperative genetic algorithms: a new approach to solve the path planning problem for cooperative robotic manipulators sharing the same work space,” IEEE Intelligent Robots and Systems, Victoria, Oct. 1998, pp. 267–272.
    [24] http://en.wikipedia.org/wiki/Cooperative_coevolution
    [25] 張文修、梁怡,遺傳算法的數學基礎,西安交通大學出版社,2000。
    [26] 謝奇均,具遠端控制服務型移動機器人之研究,中原大學電機工程學系碩士論文,台灣,民國100年。
    [27] http://zh.wikipedia.org/wiki/Android
    [28] 曾吉弘、林毓祥、Juan Antonio,機器人程式設計與實作--使用JAVA,碁峯資訊,2010。
    [29] 吳雅峰、蘇亞光,深入淺出Android遊戲程式開發範例大全,博碩文化,2011。
    [30] http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=9734
    [31] http://shop.asus.com/store/asustw/zh_TW/pd/ThemeID.31533000/productID.280669900/categoryID.61631300
    [32] 張真誠、蔡文輝、胡育誠,資料結構導論C語言實作,全華圖書公司,2007。
    [33] http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

    下載圖示
    QR CODE