研究生: |
李致賢 |
---|---|
論文名稱: |
φ-單調算子的擴張 |
指導教授: | 朱亮儒 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 有序錐程序 、凹映射 、φ-單調算子 、擴張 、擴張系統 、遞移性質 、算子的擴張和 、向量次梯度 、向量ε-次梯度 、Burachik形式擴張 、Rockafellar形式擴張 、變分不等式 |
論文種類: | 學術論文 |
相關次數: | 點閱:169 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章裡,我們將要介紹兩個關於φ-monotone算子的概念。其中一個內容是探討φ-monotone算子的擴張,例如︰Burachik形式擴張 以及Rockafellar形式擴張 。我們將描述擴張系統的一般性質並且找出包含transportation性質的最大的擴張系統。另一個內容是關於不同的φ-monotone算子的和;更明確的說,我們將會介紹一種兩個φ-monotone算子的擴張和,並且說明在某幾種情況下利用maximal φ-monotone的性質,它將會轉變成一般的和。
[1] H. Attouch & H. Br´ezis (1986). Duality for the sum of convex functions in general Banach spaces, in : J.A. Barroso (Ed.), ”Aspects of Mathematics and its Applications”, North Holland, Amsterdam, 125-133.
[2] J.M. Borwein (2006). Maximality of sums of two maximal monotone Operators in general Banach spaces, American Mathematical Society 134, 2951-2955
[3] R.I. Bot¸, S.-M. Grad, & G. Wanka (2007). Weaker constraint qualifications in maximal monotonicity. Numerical Functional Analysis and Optimization 28, 27-41
[4] R.S. Burachik, A.N. Iusem, & B.F. Svaiter (1997). Enlargements of maximal monotone operators with applications to variational inequalities, Set-Valued Anal
5(2), 159-180.
[5] R.S. Burachik, C.A. Sagastiz´abal, & B.F. Svaiter 1998). ε-enlargements of maximal monotone operators : Theory and Applications, in Nonsmooth, Piecewise
Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi (eds), Kluwer Academic Publishers, 25-43.
[6] L.J. Chu (1995). On the sum of monotone operators, The Michigan Mathematical Journal 43(2), 273-289.
[7] J.-B. Hiriart-Hrruty, M. Moussaoui, A. Seeger, & M. Volle (1995). Subdifferential calculus without constraint qualification hypothesis, Nonliear Anal. TMA 24, 1727-1754.
[8] J.-B. Hiriart-Hrruty & R.R. Phelps (1993). Subdifferential calculus using ε-subdifferentials, J. Funct. Anal. 118, 154-166.
[9] I.V. Konnov (2008). Nonlinear extended variational inequalities without differentiability: Applications and solution methods, Nonlinear Anal. TMA 69, 1-13.
[10] R. Lucchetti & F. Patrone (1981). A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities, Numer. Funct.
Anal. Optim. 3(4), 461-476.
[11] J.E. Martinez-Legaz & M. Th´era (1996). ²-subdifferentials in the terms of subdifferentials,
Set-valued Anal. 4, 327-332.
[12] M. Nisipeanu (1997). Somme variationnelle d’op´erateurs et applications, Th`ese del’Universit´e de Limoges.
[13] M. Nisipeanu & M. Th´era (2008). Variationnal sum of maximal monotone operators: approach via saddle functions. In preparation.
[14] J.P. Revalski (1985). Variational inequalities with unique solution, in Mathematics of the Bulgarian Mathematicians, 534-541.
[15] J.P. Revalski & M. Th´era (2002). Enlargements and sums of monotone operators, Nonlinear Anal. TMA 48, 505-519
[16] J.P. Revalski & M. Th´era (1999). Variational and extended sums of monotone operators. III-posed Variational Problems and Regularization Techniques, 229-246.
[17] R.T. Rockafellar (1970). Convex Analysis, Princeton, New Jersey, Princeton University Press.
[18] B.F. Svaiter (2000). A family of enlargements of maximal monotone Operators. Set-Valued Anal. 8(4), 311-328.
[19] L. Vesel´y (1994). Local uniform boundness principle for families of ε-monotone operators, Nonlinear Anal. TMA 24, 1299-1304.