簡易檢索 / 詳目顯示

研究生: 李致賢
論文名稱: φ-單調算子的擴張
指導教授: 朱亮儒
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 20
中文關鍵詞: 有序錐程序凹映射φ-單調算子擴張擴張系統遞移性質算子的擴張和向量次梯度向量ε-次梯度Burachik形式擴張Rockafellar形式擴張變分不等式
論文種類: 學術論文
相關次數: 點閱:169下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章裡,我們將要介紹兩個關於φ-monotone算子的概念。其中一個內容是探討φ-monotone算子的擴張,例如︰Burachik形式擴張 以及Rockafellar形式擴張 。我們將描述擴張系統的一般性質並且找出包含transportation性質的最大的擴張系統。另一個內容是關於不同的φ-monotone算子的和;更明確的說,我們將會介紹一種兩個φ-monotone算子的擴張和,並且說明在某幾種情況下利用maximal φ-monotone的性質,它將會轉變成一般的和。

    Introduction and Preliminaries......1 Main Results on the Class......6 Extended Sum of φ-Monotone Operators......10 References......17

    [1] H. Attouch & H. Br´ezis (1986). Duality for the sum of convex functions in general Banach spaces, in : J.A. Barroso (Ed.), ”Aspects of Mathematics and its Applications”, North Holland, Amsterdam, 125-133.
    [2] J.M. Borwein (2006). Maximality of sums of two maximal monotone Operators in general Banach spaces, American Mathematical Society 134, 2951-2955
    [3] R.I. Bot¸, S.-M. Grad, & G. Wanka (2007). Weaker constraint qualifications in maximal monotonicity. Numerical Functional Analysis and Optimization 28, 27-41
    [4] R.S. Burachik, A.N. Iusem, & B.F. Svaiter (1997). Enlargements of maximal monotone operators with applications to variational inequalities, Set-Valued Anal
    5(2), 159-180.
    [5] R.S. Burachik, C.A. Sagastiz´abal, & B.F. Svaiter 1998). ε-enlargements of maximal monotone operators : Theory and Applications, in Nonsmooth, Piecewise
    Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi (eds), Kluwer Academic Publishers, 25-43.
    [6] L.J. Chu (1995). On the sum of monotone operators, The Michigan Mathematical Journal 43(2), 273-289.
    [7] J.-B. Hiriart-Hrruty, M. Moussaoui, A. Seeger, & M. Volle (1995). Subdifferential calculus without constraint qualification hypothesis, Nonliear Anal. TMA 24, 1727-1754.
    [8] J.-B. Hiriart-Hrruty & R.R. Phelps (1993). Subdifferential calculus using ε-subdifferentials, J. Funct. Anal. 118, 154-166.
    [9] I.V. Konnov (2008). Nonlinear extended variational inequalities without differentiability: Applications and solution methods, Nonlinear Anal. TMA 69, 1-13.
    [10] R. Lucchetti & F. Patrone (1981). A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities, Numer. Funct.
    Anal. Optim. 3(4), 461-476.
    [11] J.E. Martinez-Legaz & M. Th´era (1996). ²-subdifferentials in the terms of subdifferentials,
    Set-valued Anal. 4, 327-332.
    [12] M. Nisipeanu (1997). Somme variationnelle d’op´erateurs et applications, Th`ese del’Universit´e de Limoges.
    [13] M. Nisipeanu & M. Th´era (2008). Variationnal sum of maximal monotone operators: approach via saddle functions. In preparation.
    [14] J.P. Revalski (1985). Variational inequalities with unique solution, in Mathematics of the Bulgarian Mathematicians, 534-541.
    [15] J.P. Revalski & M. Th´era (2002). Enlargements and sums of monotone operators, Nonlinear Anal. TMA 48, 505-519
    [16] J.P. Revalski & M. Th´era (1999). Variational and extended sums of monotone operators. III-posed Variational Problems and Regularization Techniques, 229-246.
    [17] R.T. Rockafellar (1970). Convex Analysis, Princeton, New Jersey, Princeton University Press.
    [18] B.F. Svaiter (2000). A family of enlargements of maximal monotone Operators. Set-Valued Anal. 8(4), 311-328.
    [19] L. Vesel´y (1994). Local uniform boundness principle for families of ε-monotone operators, Nonlinear Anal. TMA 24, 1299-1304.

    下載圖示
    QR CODE