簡易檢索 / 詳目顯示

研究生: 蔡宗佑
Tsai, Tsung-Yu
論文名稱: 基於低功耗藍芽實現強健型室內定位
BLE-Based Implementation for Robust Indoor Localization
指導教授: 許陳鑑
Hsu, Chen-Chien
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 低功耗藍芽室內定位模糊推論系統近鄰傳播聚類演算法
英文關鍵詞: Bluetooth Low Energy, Indoor Localization, Fuzzy Inference System, Affinity Propagation Clustering Algorithm
DOI URL: http://doi.org/10.6345/NTNU201900972
論文種類: 學術論文
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對低功耗藍芽(Bluetooth Low Energy, BLE)室內定位演算法做改良,以降低誤差對室內定位結果的影響及增加準確率。本論文首先以BLE裝置佈置一無線網路環境,透過訊號強度的採集,進行演算法的計算,進而求出待測物的定位點。為改善不穩定的訊號強度對計算定位點造成的擾動,本論文採用模糊邏輯的概念,降低不穩定訊號對定位演算法的影響,並藉由近鄰傳播聚類演算法進行資料分群,計算出在模糊系統中的模糊集合,最後透過路徑圖表法由前一時刻的定位點來輔助演算法的計算,以增加定位的準確率。演算法主要分為離線與在線兩階段,離線階段係透過收集大量的資料,經過分群演算法後得到不同的群集,進而用來建置模糊規則庫;在線階段為接收即時的資料,透過模糊推論以及路徑圖表法估測出定位點。最後,本論文將對所提出的演算法進行不同情境下的實驗,並對這些實驗結果做分析。

    This thesis mainly focuses on improving the Bluetooth Low Energy (BLE) based indoor localization algorithm to reduce the error of localization and increase the ac-curacy. BLE devices are used to deploy a wireless network environment. By collect-ing a set of the received signal strength, the algorithm is used to obtain the localiza-tion of the object. In order to avoid the fluctuations caused by unstable received sig-nal strength, fuzzy system is used in the proposed algorithm consist-ing of two phases: the offline phase and the online phase. In the offline phase, through collecting a large amount of data, different clusters are obtained based on a clustering algorithm. Next, the clusters are used to establish a fuzzy rule base. In the online phase, according to real-time data, fuzzy system and path graph method are used to obtain the localiza-tion result. Finally, extensive experiments are con-ducted to validate the performance of the proposed algorithm in various situations.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 2 第二章 定位技術概述 3 2.1 無線網路技術 3 2.2 定位方法 8 第三章 理論基礎 15 3.1 低功耗藍芽 ( Bluetooth Low Energy, BLE ) 15 3.2 近鄰傳播聚類演算法 ( Affinity Propagation Clustering Algorithm ) 18 3.3 模糊系統(Fuzzy System) 21 第四章 強健型室內定位演算法設計 26 4.1 定位演算法之概念 26 4.2 演算法架構 27 4.3 模糊化之歸屬函數 30 4.4 模糊規則庫 32 4.5 模糊推論系統 38 第五章 實驗結果與討論 45 5.1 訊號強度資料點收集 45 5.2 Beacon訊號強度特性 51 5.3 實驗環境配置 54 5.4 與傳統Fingerprinting定位法之比較 55 5.5 訊號強度資料點分群之實驗 56 5.6 不同Beacon數量下的定位實驗 60 5.7 路徑圖表搜尋法 63 第六章 結論與未來發展 68 6.1 結論 68 6.2 未來展望 68 參考文獻 69 自  傳 71 學術成就 72

    [1] R. Pugaliya, J. Chabhadiya, N. Mistry, and A. Prajapati, “Smart Shoppe Using Bea-con,” in Proc. IEEE Int’l. Conf. Smart Technol. Manag. Comput. Commun. Controls Energy Materials (ICSTM), Chennai, India, Aug. 2017, pp. 32-35.
    [2] 吳宗遠,“Beacon微定位應用功能研究-以室內停車場管理系統為例”,樹德科技大學資訊工程系碩士論文,2016年08月。
    [3] X.-Y. Lin, T.-W. Ho, C.-C. Fang, Z.-S. Yen, B.-J. Yang, and F. Lai, “A Mobile Indoor Positioning System Based on ibeacon Technology,” in Proc. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, Aug. 2015, pp. 4970-4973.
    [4] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Positioning Technique and System,” IEEE Trans. Fuzzy Syst. Man Cybern., vol. 37, no. 6, pp. 1067-1080, Nov. 2007.
    [5] S.-H. Fang, T.-N. Lin, and K.-C. Lee, “A Novel Algorithm for Multipath Fingerprint-ing in Indoor WLAN Environment,” IEEE Trans. Wireless Com., vol. 7, no. 9, pp. 3579-3588, Sep. 2008.
    [6] P. Bahl, and V.N. Padmanabhan, “RADAR: An In-bulding RF-Based User Location and Tracking System,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar. 2004, pp. 775-784.
    [7] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, “Received-Signal-Strength-Based In-door Positioning Using Compressive Sensing,” IEEE Trans. Mob. Compu., vol. 11, no. 12, pp.1983-1993, Dec. 2012.
    [8] J. Ma, X. Li, X. Tao, and J. Lu, “Cluster Filtered KNN: A WLAN-Based Indoor Posi-tioning Scheme,” in Proc. Int’l Symp. World of Wireless, Mobile and Multimedia Net-works, Newport Beach, CA, June 2008. pp. 1-8.
    [9] W. Kang, and Y. Han, “SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization,” IEEE Sensor J., vol. 15, no. 5, pp. 2906-2016, May, 2015.
    [10] L. Chen, K. Yang, and X. Wang, “Robust Cooperative Wi-Fi Fingerprinting-Based Indoor Localization,” IEEE Internet of Things J., vol. 3, no. 6, pp. 1406-1417, Dec. 2016.
    [11] H. Xujian and W. Hao, “WIFI indoor positioning algorithm based on improved Kal-man filtering,” in Proc. Int’l Conf. Intell. Transp., Big Data Smart City (ICITBS), Changsha, China, Dec. 2016, pp. 349–352.
    [12] R. Faragher and R. Harle, “Location Fingerprinting with Bluetooth Low Energy Bea-cons,” IEEE Selected Area in Comm. J., vol. 33, no. 11, pp. 2418-2428, Nov. 2015.
    [13] W. He, P.-H. Ho, and J. Tapolcai, “Beacon Deployment for Unambiguous Positioning,” IEEE Internet of Things J., vol. 4, no. 5, pp. 1370-1379, Oct. 2017.
    [14] B. J. Frey and D. Dueck, “Clustering by Passing Message Between Data Point,” Sci-ence, vol. 315, no. 1, pp. 972-976, Feb. 2007.
    [15] L.-X. Wang, A Course in Fuzzy Systems and Control. London, U.K.: Prentice-Hall, 1997.
    [16] L. M. Ni, Y. Liu, Y. C. Lau, and A.P. Patil, “LANDMARC: Indoor Location Sensing Using Active RFID,” in Proc. 1st IEEE Int’l Conf. Pervasive Comput. Commun., Fort Worth, TX, Mar. 2003, pp. 407-415.
    [17] B. Alavi and K. Pahlavan, “Modeling of the TOA-Based Distance Measurement Error Using UWB Indoor Radio Measurements,” IEEE Communication Letters, vol. 10, no. 4, pp. 275-277, Apr. 2006.
    [18] I. Guvenc, C.-C. Chong, and F. Watanabe, “NLOS Identification and Mitigation for UWB Localization Systems,” in Proc. Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, Kowloon, China, Mar. 2007, pp. 1571-1576.
    [19] M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor Localization System Using RSSI Measurement of Wireless Sensor Network Based on ZigBee Standard,” in Proc. IASTED Int’l. Conf. WSN, Palma de Mallorca, Spain, July 2006, pp. 1-6.
    [20] B. Alavi and K. Pahlavan, “Modeling of the Distance Error for Indoor Geolocation,” in Proc. IEEE Wireless Commun. Networking Conf., 2003, New Orleans, LA, Mar. 2003, pp. 668-672.
    [21] C. Yang and H.-R. Shao, ‘‘WiFi-Based Indoor Positioning,’’ IEEE Commun. Mag., vol. 3, no. 53, pp. 150-157, Mar. 2015.
    [22] D. L. Fried, “Differential Angle of Arrival: Theory, Evaluation, and Measurement Feasibility,” Radio Science, vol. 10, no. 1, pp. 71-76, Jan. 1975.
    [23] H. Wang, Z. Gao, Y. Guo, and Y. Huang, “A Survey of Range-Based Localization Algorithms for Cognitive Radio Networks,” in Proc. 2012 2nd International Confer-ence on Consumer Electronics, Communications and Networks, Yichang, China, Apr. 2012, pp. 844-847.
    [24] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation Measurements and Models for Wireless Communications Channels,” IEEE Commun. Mag., vol. 33, pp. 42-49, Jan. 1995.
    [25] M. Galeev, “Bluetooth 4.0: An Introduction to Bluetooth Low Energy-Part II,” July 2011, https://www.eetimes.com/docment.asp?doc_id=1278¬¬¬966.
    [26] 王政綱,“傳統BT與BLE架構有什麼不一樣呢?,” Jan. 5, 2012, http://wjungle.blogspot.com/2012/01/btble.html.
    [27] J. MacQueen, “Some methods for classification and analysis of multivariate observa-tions,” in Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281-297.
    [28] A. Kushki, K. N. Plataniotis, A. N. Venetsanopoulol, and C. S. Regazzoni, ‘‘Radio Map Fusion for Indoor Positioning in Wireless Local Area Networks,’’ in Proc. 7th Int’l Conf. on Information Fusion (FUSION), Philadelphia, PA, July 2005, p.p. 1311-1318.
    [29] L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy Systems, vol. 1, no. 2, pp. 146-155, May 1993.
    [30] C.-C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part Ⅱ,” IEEE Trans. System, Man, and Cybernetics, vol. 20, no. 2, pp. 419-435, Mar. 1990.

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE