簡易檢索 / 詳目顯示

研究生: 龔彥丞
Kung, Yen-Cheng
論文名稱: 跨樓層文件傳遞機器人之設計與實現
Design and Implementation of Cross-Floor Document Delivery Robot
指導教授: 許陳鑑
Hsu, Chen-Chien
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 蒙地卡羅定位法A*演算法路徑規劃骨架化導航移動型機器人
英文關鍵詞: Monte Carlo Localization, A Star, skeleton, navigation, mobile robot, path planning
DOI URL: https://doi.org/10.6345/NTNU202203671
論文種類: 學術論文
相關次數: 點閱:224下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一擁有跨樓層文件傳遞功能之機器人的設計與實現,使輪型機器人能夠在一已知地圖的大樓中自主導航,並搭配影像及機械手臂,使機器人能夠搭乘電梯上下至目的地樓層,再配合開發於手機上的應用程式,讓使用者可以藉由使用者介面傳遞目的地資訊給機器人,使其前往目的地。針對定位演算法,本文提出「嵌設錯誤修正向量之蒙地卡羅定位法」,使傳統的蒙地卡羅定位的感測器資訊不僅僅只用來判別粒子的好壞與否,更可進一步得知下一刻時間的參考向量。路徑規劃部分本文提出了「改良型A*混合多重骨架路徑規劃演算法」,以改善傳統骨架繞路的問題,並搭配搜尋上下載點的策略,使其規劃出一條遠離障礙物並安全的路徑,不管在路徑長度還是規劃時間都較傳統A*混合骨架演算法來得優異。在電梯按鈕辨識部分,本篇論文使用輪廓提取的方式,對建立好的模組進行比對,使機器人得知電梯按鈕的座標。手臂控制方面,主要是搭配單攝影機,將三維正逆向運動學的數學模型簡化為二維,可使較不精準的機器手臂如同人類的手臂一樣,朝向按鈕伸直,並觸碰按鈕。最後再將使用者介面實現於Android智慧裝置上,搭配TCP/IP通訊,以及語音辨識工具,讓使用者可以用簡單的使用手機應用程式,命令機器人前往目的地。本論文最後以多個實驗結果驗證所提出之方法的可行性。

    This paper proposes a design and implementation of a document delivery mobile robot, which is capable of navigating in a known environment and taking elevator by a webcam and robotic arm. By developing a voice recognition program, users can order the robot to move to a destination by using a mobile device. Regarding robot localization, this thesis proposes a Monte Carlo localization (MCL) algorithm incorporating an error correction vector, which uses the sensor measurements not only to obtain weights of particles, but also calculate an error correction vector to improve the overall localization accuracy. Moreover, a hybrid path planning algorithm using an enhanced multi-skeleton and A* approach is employed in this thesis to obtain a favorable path for the robot, which extracts a multi-skeleton of the map and introduces a strategy of searching preferable uploading points. To take an elevator reliably, a connected-component approach is used to match the model of each button on the elevator panel so that the robot can detect the buttons successfully. After detecting the buttons, kinematics is employed to control the robotic arm to push the button. Finally, the performances and the feasibility of the proposed document delivery robot are confirmed by several experimental results.
    Keywords: Monte Carlo Localization, A Star, skeleton, navigation, mobile robot.

    中文摘要 i 英文摘要 ii 誌  謝 iii 目  錄 iv 圖 目 錄 vi 表 目 錄 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究方法回顧-整體架構 2 1.3 相關研究方法回顧-定位 4 1.3.1 接收訊號強度測距法 4 1.3.2 蒙地卡羅定位法 5 1.4 相關研究方法回顧-路徑規劃 6 1.4.1 Dijkstra以及A*路徑規劃演算法 6 1.4.2 場勢法 7 1.4.3 螞蟻演算法 8 1.4.4 任意航向法 8 1.5 論文架構 9 第二章 文獻探討 10 2.1 蒙地卡羅定位法 10 2.2 路徑規劃 14 2.2.1 Dijkstra演算法 14 2.2.2 A*路徑規劃演算法 18 2.2.3 骨架法 25 2.2.4 A*混合骨架路徑規劃演算法 28 2.3 連通法 30 2.4 手臂運動學 31 2.4.1 二維平面機械手臂正向運動學 31 2.4.2 二維平面機械手臂逆向運動學 32 第三章 跨樓層機器人系統架構設計 34 3.1 系統架構 34 3.2 硬體介紹 35 3.3 導航系統 37 3.4 跨樓層功能 39 3.5 使用者介面 40 3.6 完整流程 41 第四章 嵌設錯誤修正向量之蒙地卡羅定位法 43 4.1 錯誤修正向量的計算 43 4.2 參數範圍選擇 46 4.3 模擬實驗結果 47 4.3.1 精準度實驗 47 4.3.2 收斂速度實驗 49 4.3.3 無里程計精準度實驗 51 4.4 實驗討論 53 第五章 改良型A*混合多重骨架路徑規劃演算法 54 5.1 多重骨架提取 54 5.2 改良式A*混合多重骨架演算法 56 5.3 模擬實驗結果 60 5.3.1 實驗一 61 5.3.2 實驗二 64 5.3.3 實驗討論 69 第六章 電梯按鈕辨識及按壓 70 6.1 電梯環境介紹 70 6.2 跨樓層功能完整流程 71 6.2.1 按壓電梯按鈕流程 72 6.2.1.1 電梯按鈕座標獲取74 6.2.1.2 手臂控制 78 6.3 跨樓層功能實驗結果 81 6.3.1 實驗一 82 6.3.2 實驗二 83 6.3.3 實驗討論 85 第七章 使用者介面 86 7.1 開發軟體 86 7.2 通訊協定 87 7.3 語音辨識系統 87 7.4 實驗結果 87 7.5 實驗討論 89 第八章 實驗結果 90 8.1 實驗環境介紹 90 8.2 個別實驗 92 8.2.1 路徑規劃實驗結果 92 8.2.2 定位實驗結果 97 8.3 完整流程實驗結果 103 8.4 實驗討論 106 第九章 結論 107 參考文獻 108 學術成就 112

    [1] Irobot 官方網站,http://www.roombavac.com.tw/
    [2] 新光保全,http://www.sks.com.tw/
    [3] 誼光保全,http://www.yks.com.tw/news/142
    [4] 2016 台灣機器人與智慧自動化展,http://www.tairos.tw/seminarC1.asp
    [5] 玉山機器人協會,http://www.era.org.tw/main/category/news/news-irhocs/
    [6] 玉山機器人協會,http://www.era.org.tw/main/category/news/news-wro/
    [7] 玉山機器人協會FT,http://www.era.org.tw/main/category/news/news-ftc/
    [8] 聯合新聞網,http://goo.gl/xz6Xuy
    [9] 陳漢忠,智慧型搭乘電梯機器人,碩士論文,國立中央大學電機工程研究所,民國97年。
    [10] 林玗瑾,輪型機器人之影像辨識應用於跟隨人與電梯辨識,碩士論文,國立中央大學電機工程研究所,民國101年。
    [11] H. M. Choset, Principles of Robot Motion: Theory, Algorithms, and Implementations, 2005.
    [12] 張嘉麟,模糊邏輯控制可搭乘電梯之立體視覺伺服輪型機器人,碩士論文,中原大學機械工程研究所,民國95年。
    [13] MBA智庫百科,http://wiki.mbalib.com/zh-tw/%E6%A8%A1%E7%B3%8A%E6%8
    E%A7%E5%258%208%B6%E7%90%86%E8%AE%BA
    [14] P. Barsocchi, S. Lenzi, S. Chessa and G. Giunta, “A novel approach to indoor RSSI localization by automatic calibration of the wireless propagation model,” in Proc. IEEE Vehicular Technology Conference, Barcelona, Apr. 2009, pp. 1-5.
    [15] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted centroid localization in Zigbee-based sensor networks,” in Proc. IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, Oct. 2007, pp. 1-6.
    [16] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless indoor localization with little human intervention,” in Proc. 18th annual international conference on Mobile computing and networking, Aug. 2014, pp. 269-280.
    [17] D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo localization for mobile robots,” Artificial Intelligence, vol. 128, no. 1, pp. 99-141, Apr. 2001.
    [18] L. Zhang, R. Zapata, and P. Lepinay, “Self-adaptive Monte Carlo localization for mobile robots using range sensors,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, Oct. 2009, pp.1541-1546.
    [19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, the MIT Press, 2005.
    [20] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269-271, June 1959.
    [21] E. W. Dijkstra, E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, “On-the-fly garbage collection: An exercise in cooperation,” Association for Computing Machinery, vol. 21, no. 11, pp. 966-975, Oct. 1978.
    [22] N. Jasika, N. Alispahic, E. Arslanagic, K. Ilvana, L. Elma, and N. Nosovic, “Dijkstra's shortest path algorithm serial and parallel execution performance analysis,” in Proc. 35th International Convention, Opatija, May 2012, pp.1811-1815.
    [23] W. Zeng and R. L. Church, “Finding shortest paths on real road networks: the case for A*,” International Journal of Geographical Information Science, vol. 23, no. 4, pp.531-543, Apr. 2009.
    [24] J. Yao, C. Lin, X. Xie, A. Wang, and C. C. Hung, “Path planning for virtual human motion using improved a star algorithm,” in Proc. International Conference in Information Technology: New Generations, Las Vegas, Apr. 2010, pp. 1154-1158.
    [25] C. Wang, “Path planning of automated guided vehicles based on improved A-Star algorithm,” in Proc. IEEE International Conference on Information and Automation, Lijiang, Aug. 2015, pp. 8-10.
    [26] I. Pohl, “First results on the effect of error in heuristic search,” Machine Intelligence, vol. 5, pp. 219-236, Nov. 1970.
    [27] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the Heuristic determination of minimum cost paths,” IEEE Trans. Systems Science and Cybernetics, vol. 4, no. 2, pp.100-107, July 1968.
    [28] A. McAndrew, An introduction to digital image processing with matlab, 2004.
    [29] L. Ming, W. Jun, and Z. Meiqiang, “On skeleton extraction algorithm for path planning of mobile robots in complex planar maps,” in Proc. 29th Chinese Control Conference, Beijing, July 2010, pp. 3704-3708.
    [30] O. Takahashi and R. Schilling, “Motion planning in a plane using generalized Voronoi diagrams,” IEEE Trans. Robotics and Automation, vol. 5, no. 2, pp. 143-150, Apr. 1989.
    [31] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot navigation,” in Proc. IEEE International Conference on Robotics and Automation, Sacramento, Apr. 1991, pp. 1398-1404.
    [32] Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,” IEEE Trans. Robotics and Automation, vol. 8, no. 1, pp. 23-32, 1992.
    [33] Y. Z. Cong and S. G. Ponnambalam, “Mobile robot path planning using ant colony optimization,” in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, July 2009, pp. 851-856.
    [34] M. Dorigo and D. Caro, The ant colony optimization meta-heuristic: New ideas in optimization, New York, 1999.
    [35] M. R. Moreno, “Improving efficiency in any-angle path-planning algorithms,” in Proc. IEEE International Conference Intelligent Systems, Sofia, Sept. 2012, pp. 213-218.
    [36] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic motion planning using any-angle path biasing,” in Proc. IEEE International Conference on Robotics and Automation, Stockholm, May 2016, pp. 2775-2781.
    [37] Wiki-貝氏定理,https://en.wikipedia.org/wiki/Bayesian_filtering
    [38] Wiki-輪盤法,https://en.wikipedia.org/wiki/Fitness_proportionate_selection
    [39] Wiki-競爭選取法,https://en.wikipedia.org/wiki/Tournament_selection
    [40] S. Mashohor, J. R. Evans, and T. Arslan, “Elitist selection schemes for genetic algorithm based printed circuit board inspection system,” Evolutionary Computation, vol. 2, pp. 974-978, 2005.
    [41] 游佳龍,即時影像辨識與路徑追蹤於輪式機器人自動搭乘電梯之應用,碩士論文,國立臺灣海洋大學通訊與導航工程學系,民國101年。
    [42] 許哲瑋,結合機械手臂之多功能輪型機器人,碩士論文,國立中央大學電機工程學系,民國101年。

    下載圖示
    QR CODE