簡易檢索 / 詳目顯示

研究生: 呂香儒
Hsiang-Ju Lu
論文名稱: 台灣西南地區現生牡蠣與考古遺址出土牡蠣殼體穩定同位素所反映之水體環境意義
Water environment Inferred from Stable Isotope Compositions of Modern and Archaeological Oyster Shells, Southwest Taiwan
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 穩定同位素牡蠣水體環境考古遺址
英文關鍵詞: Stable isotope, Oyster, Water environment, Archaeological site
論文種類: 學術論文
相關次數: 點閱:243下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    台灣西南沿海現生牡蠣與台南南關里遺址牡蠣殼體穩定同位素所反映之環境意義
    (中華民國九十八年七月)
    呂香儒 國立台灣師範大學地球科學研究所
    指導教授:米泓生博士

    本研究利用養殖於雲林縣金湖漁港潮間帶水域現生長牡蠣(Crassostrea gigas)標本以及水樣標本,探討現生牡蠣殼體氧同位素成份與水體氧同位素數值及其生活水體間之關係。並進一步將現生殼體氧同位素數值與環境之關係,應用於南關里遺址和南關里東遺址牡蠣殼體的氧同位素數值,以了解台灣西南地區環境變遷的情形。標本均由喙部至腹部縱切製成薄片,藉透射光及陰極射線顯微鏡觀察韌帶部殼體的微細構造及保存狀況。
    現生牡蠣分別於2008年6、11、12月及2009年3、5月取得,其殼體韌帶部位δ18O數值介於-5.78‰~-0.92‰之間(平均值為-3.90±1.17‰,N=187;1σ),δ13C數值介於-4.07‰~-0.24‰之間(平均值為-2.15±0.77‰)。不同月份死亡的個體,其氧同位素皆能呈現出輕重不同的變化,符合環境變化的趨勢,從2008年6月至2009年5月的牡蠣氧同位素記錄,可看到完整一年的變化。將不同月份的海水氧同位素與各自月份生長的殼體氧同位素代入氧同位素溫度方程式,可發現計算出的最低溫為19.7°C,與實際海溫的15°C不符,因此推論牡蠣適合生長的環境溫度應高於19°C,低於19°C牡蠣可能會出現停止生長或生長緩慢的現象。
    台南科學園區之遺址有兩處,一為南關里遺址,另一為南關里東遺址。南關里遺址年代距今約4100~4700年前,可分為兩個文化層,本研究取自第一文化層的標本有3個,其中保存較好(不發光)的δ18O數值介於-6.91‰~-0.80‰之間(平均值為-3.36±1.65‰,N=83;1σ),δ13C數值介於-4.08‰~-0.39‰之間(平均值為-1.15±1.35‰);南關里第二文化層的標本有5個,δ18O數值介於-6.51‰~-0.35‰之間(平均值為-2.89±1.38‰,N=93;1σ),δ13C數值介於-5.80‰~2.50‰之間(平均值為-1.66±2.07‰);南關里東遺址年代距今約4200~4700年,標本有3個,δ18O數值介於-7.93‰~-0.37‰之間(平均值為-2.91±1.81‰,N=75;1σ),δ13C數值介於-5.59‰~-0.56‰之間(平均值為-2.35±1.19‰)。經統計分析,遺址牡蠣較現生牡蠣氧同位素值重1.01‰,顯示距今4100~4700年前溫度較現今低3-5°C,4千多年前呈現較冷的現象。由牡蠣殼體韌帶部氧同位素數值分布可知,考古遺址牡蠣採收季節多為冬天至春天的時候。

    ABSTRACT

    Water environment Inferred from Stable Isotope Compositions of Modern and Archaeological Oyster Shells, Southwest Taiwan
    (July, 2009)
    Hsiang-Ju Lu, Department of Earth Sciences, National Taiwan Normal University, Taiwan, Republic of China
    Advisor: Dr. Horng-Sheng Mii

    The cultivated oysters, Crassostrea gigas, and water samples were collected at Jinhu Fishing Port, Yunlin county in June, November, and December of 2008, and in March and May of 2009. We calibrate the oxygen isotope compositions of modern oyster shells to the temperature, salinity, and oxygen isotope contents of the water they lived in. The archaeological oyster shells were got at Southern Taiwan Science Park. In order to understand climate change in Southwest Taiwan, we analyzed the stable isotope compositions of modern oyster shells compared to those of archaeological oyster shells. The oyster shells were cut from dorsum to abdomen and were made into thin sections. Microstructure of cross- sections of the ligamental area were observed under the microscope with the transmitted light and cathodoluminescence to evaluate the shell preservation.
    The oxygen isotope values of the ligamental area of the modern oyster shells are between -5.78‰ and -0.92‰ (-3.90± 1.17‰, N=189; 1σ). The carbon isotope values of the ligamental area of modern oyster shells are between -4.07‰ and -0.24‰ (-2.15± 0.77‰). The δ18O curves of individual modern oyster shells which died in different months can reflect seasonal change and the whole year record, separately. The calculated minimum oxygen isotope temperature is 19.7°C, but whereas the measured minimum temperature is 15°C. Thus, the modern oyster shells may not record the lowest temperature in winter.
    Archaeological oyster shells are from two different archaeological sites in Southern Taiwan Science Park. One is Nan Kuang Li (NKL) and the other is Nan Kuang Li East (NKLE) Archaeological Site. The age of Nan Kuang Li Archaeological Site was roughly 4100~ 4700 B. P.. The δ18O values of the three NKL oyster shells from the upper layer are between -6.91‰ and -0.80‰ (-3.36± 1.65‰, N=83; 1σ) and the δ13C values are between -4.08‰ and -0.39‰ (-1.15± 1.35‰). Five shells were took from the lower layer in NKL Archaeological Site. The δ18O values of the well- preserved NKL oyster shells are between -6.51‰ and -0.35‰(-2.89± 1.38‰, N=93; 1σ) and the δ13C values are between -5.80‰ and 2.50‰ (-1.66± 2.07‰). There were three shells from Nan Kuang Li East archaeological site. The δ18O values of the well- preserved NKLE oyster shells are between -7.93‰ and -0.37‰ (-2.91± 1.81‰, N=75; 1σ), and the δ13C values are between -5.59‰ and -0.56‰ (-2.35± 1.19‰). Archaeological oyster shells are 1.01‰ greater than that of the modern oyster shells in δ18O values. It indicates that the climate in 4100~ 4700 a. B. P. was 4 °C less than modern. Based on the δ18O profiles of each archaeological shells, most of the archaeological oysters were collected in winter and spring.

    目錄 ABSTRACT iii 摘要 v 誌謝 vii 目錄 ix 圖目 xi 表目 xvii 第一章、緒論 1 1.1前言 1 1.2穩定碳氧同位素的原理與古環境上的應用 2 1.3碳酸鈣殼體微量元素的原理與應用 5 1.4前人研究 7 1.4.1牡蠣相關研究與應用 7 1.4.2台南科學園區考古遺址的研究 11 1.4.3距今4000至5000年前的氣候變化 13 1.5研究目的 14 第二章、研究區域及材料 15 2.1研究區域 15 2.1.1口湖的人文特色自然環境演變 16 2.1.2台南的自然環境——海岸環境與變遷 17 2.1.3南關里、南關里東之人文背景與地質條件特色 19 2.1.4台灣西南海域海流狀況 20 2.2牡蠣Crassostrea gigas的生長史與生活習性 21 第三章、研究方法 25 3.1殼體標本及水樣採集與處理 25 3.2牡蠣標本前處理及薄片製作 25 3.3透射光顯微鏡及陰極射線顯微鏡觀察 26 3.4 X-ray分析 26 3.5穩定碳氧同位素分析 27 第四章、結果與討論 28 4.1標本觀察及組成 28 4.2殼體保存度 31 4.3取樣位置的選擇 38 4.4海水資料 43 4.5 穩定碳氧同位素分布 50 4.5.1 殼體碳氧同位素分布 50 4.5.2 由單一殼體探討季節性變化 57 4.5.3 穩定同位素在考古學上的意義 73 第五章、總結 75 參考文獻 76 附錄一、金湖地區現生牡蠣養殖區水樣分析數值 86 附錄二、金湖地區現生牡蠣殼體碳氧同位素分析數值 90 附錄三、南關里與南關里東遺址牡蠣殼體碳氧同位素數值 94 附錄四、金湖地區現生牡蠣養殖區水樣氧同位素平均 98 附錄五、現生牡蠣對應日期與計算溫度 99

    參考文獻

    丁招弟,2004,風濤口湖:雲林縣政府文化局,第13-56頁。

    吳文祥、劉東生,2001,4000a. B. P.前後降溫事件與中華文明的誕生:第四紀研究,第21期,第443-451頁。

    宋克義,1979,牡蠣與藤壺附苗習性之比較研究:國立台灣大學碩士論文,共40頁。

    宋薰華,1988,台灣東部牡蠣養殖:豐年,第20期,第19頁。

    巫文隆,1980,台灣重要實用雙殼貝類研究:貝類學報,第7期,第101-114頁。

    李匡悌,2001,論龜山遺址出土穿孔人齒的意義:歷史語言研究所集刊,第72期,第699-722頁。

    李匡悌,2005,論墾丁史前聚落遺址的貝類採集及其古代水體環境的意義: 南島學報,第1期,第47-63頁。

    周飛宏,2007,從全新世沉積層序探討台南地區褶皺逆衝斷層帶的構造特性:國立台灣大學碩士論文,共114頁

    波部忠重,1977,二枚貝綱/掘足綱:日本國東京都北隆館發行,共372頁。

    洪敏麟,1969,臺灣堡圖集:臺中市:臺灣省文獻委員會。

    洪敏麟,1972,臺灣省通志-卷八,同冑志‧歷代治理篇:臺中市:臺灣省文獻委員會,第23頁。

    唐自華,穆桂金,陳冬梅,巫新華、艾力‧艾沙,2007,昆侖山北坡近5000年以來黃土堆積的環境信息:第四紀研究,第27期,第598-606頁。

    夏正楷、楊曉燕,2003,我國北方4k a. B. P.前後異常洪水事件的初步研究:第四紀研究,第23期,第667-673頁。

    張志成, 2000, 台灣海峽海水氧同位素組成之時空分佈變化:國立中山大學碩士論文,共114 頁。

    梁明煌,1981,布袋養殖牡蠣(CrassostreagigasThunberg)之成長與著苗硏究:台灣大學碩士論文,共56頁。

    許清華,1998,太陽、氣候、饑荒與民族大遷移:中國科學(D輯),第28期,第366-384頁。

    郭兆敏,1994,頭社盆地一萬餘年來湖泊沉積物之花粉分析:台灣大學碩士論文,共82頁。

    陳文山、宋時驊、吳樂群、徐澔德、楊小青,2005, 末次冰期以來台灣海岸平原區的海岸線變遷: 國立臺灣大學考古人類學刊,第62期,第40-55頁。

    陳文山、李匡悌、臧振華、朱正宜,2009,全新世以來台灣西南部海岸與平原的沉積環境變遷。

    陳國章,2006,雲林縣地名辭典:台灣地理學會,第35頁。

    彭宗仁、汪中和、陳鎮東,1990,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究:經濟部中央地質調查所特刊,第四號,307-322頁。

    雲林縣民政局,2003,http://www.kouhu.gov.tw/from/index.asp?m=2&m1=3&m2=15

    黃丁郎,1974,牡蠣養殖:台灣銀行季刊,第25期,第218-221頁。

    黃品薰,2001,香山地區牡蠣群體、沈積物及懸浮顆粒重金屬含量之季節與區域性變化:國立台灣大學碩士論文,共123頁。

    楊夢南,1996,台灣長牡蠣(CrassostreagigasThunberg)基礎生物學的研究:台灣大學漁業科學研究所碩士論文,共134頁。

    溫秋明,1994,大牡蠣和文蛤細胞培養系統之建立及其應用:國立台灣大學博士論文,共204頁。

    雷淑芬,1990,彰化蚵寮沿岸產巨牡蠣之食性與成長:國立台灣大學漁業科學研究所碩士論文,共60頁。

    臧振華、李匡悌、朱正宜,2006,先民履跡:臺南縣新營市:臺南縣政府,共329頁。

    臧振華,2002,曾文溪史前流域聚落的空間架構:南瀛文獻,第一輯,地14-37頁

    劉莉蓮,1995,有機錫污染對生物的影響:生物科學,第38期,第39-55頁。

    賴蕙蘭,1996,台灣養殖牡蠣殼空腔化測量方法之研究,中山大學碩士論文。

    繆端生,1953,台灣牡蠣的種類生理及養殖:中國水產,第11卷,第30-34頁。

    Andeus, C.T., and Crowe, D., 2000, Geochemical Analysis of Crassostrea virginica as a Method to Determine Season of Capture: Journal of Archaeological Science, v. 27, p. 33-42.

    Bond, G., Showers, W., and Cheseby, M., 1997, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates.: Science, v. 278, p. 1257-1266.

    Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multi-component carbonate system-1. Trace elements: Journal of Sedimentary Petrology, v. 50, p. 1219– 1236.

    Briffa, K.R., Osborn, T.J., Schweingruber, F.H., Harris, I.C., Jones, P.D., Shiyatov, S.G., and Vaganov, E.A., 2001, Low-frequency temperature variations from a northern tree ring density network: Journal of Geophysical Research, v. 106, p. 2929-2941.

    Brigaud, B., Pucéata, E., Pellenard, P., Vincent, B., and Joachimski, M.M., 2008, Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells Earth and Planetary Science Letters, v. 273, p. 58-67.

    Buening, N., and Spero, H.J., 1996, Oxygen- and carbon- isotope analyses of the articulate brachiopod Laqueus californianus: A recorder of environmental changes in the subeuphotic zone: Marine Biology, v. 127, p. 105-114.

    Cai, L., 1990, Basic principles of 14C dating and its historic development. In: Qiu Shihua, Chen Tiemei and Cai Lianzhen (Editors), 14C Chronological Research in China. Science Press, Beijing, p. 1-24.

    Carriker, M.R., and Palmer, R.E., 1979, A new mineralized layer in the hinge of the oyster: Science, v. 206.

    Carriker, M.R., Palmer, R.E., Sick, L.V., and Johnson, C.C., 1980, Interaction of mineral elements in sea water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems.: J. Exp. Mar. Biol. Ecol.,, v. 46, p. 279-296.

    Carter, J.G., 1980, Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhodes, D.C. and R.A. Lutz (Editors), Skeletal Growth of Aquatic Organisms. Plenum, New York, p. 69-113.

    Chen, Y.G., and Liu, T.K., 2000, Holocene uplift and subsidence along an active tectonic margin, southwestern Taiwan.: Quaternary Science Reviews, v. 19, p. 923-930.

    Clark, G.R., 1974, Growth lines in invertebrate skeletons.: Annual Review of Earth Planet Science, v. 2, p. 77-79.

    Custer, J.F., and Doms, K.R., 1990, Analysis of microgrowth patterns of the American oyster (Crassostrea virginica) in the middle Atlantic region of eastern North America: Archaeological applications: Journal of Archaeological Science, v. 17, p. 151-160.

    Dansgaard, W., 1964, Stable isotope in precipitation.: Tellus, v. 16, p. 436-468.

    deMenocal, P.B., Prtiz, J., and Guilderson, T., 2000, Coherent high-and low-latitude climate variability during the Holocene warm period.: Science, v. 288, p. 2198-2202.

    Dettman, D.L., Flessa, K.W., Roopnarine, P.D., Scho¨ne, B.R., and Goodwin, D.H., 2004, The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge: Geochimca et Cosmochimica Acta, v. 16,no. 6, p. 1253-1263.

    Epstein, S., Buchsbaum, R., Lowenstan, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale: Geological Society of America Bulletin, v. 64, p. 1315-1325.

    Folk, R.L., 1968, Petrology of sedimentary rocks: Austin, Tex.: Hemphill Pub. Co., 170 p.

    Frank, J.R., Carpenter, A.B., and Ogleshy, T.W., 1982, Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (upper Cambrian), southeast Missouri: Journal of Sedimentary Petrology, v. 52, p. 631-638.

    Gagan, M.K., and Chivas, A.R., 1995, Oxygen isotopes in Western Australian coral reveal Pinatubo aerosol-induced cooling in the western Pacific warm pool: Geophysical Research Letters, v. 22, no. 9, p. 1069-1072.

    Gat, J.R., 1981, Groundwater. In: J. R. Gat and Gonfiantini (eds.), Stable Isotope Hydrology: Deuterium and oxygen-18 in the cycle, IAEA, Vienna, Tech. Rep. Ser. No. 210.

    Gentry, D.K., Sosdian, S., Grossman, E.L., Rosenthal, Y., D., H., and Lear, C.H., 2008, Stable isotope and Sr/Ca profiles from the marine Gastropod Conus Ermineus: Testing a multiproxy approach for inferring paleotemperature and paleosalinity: Palaios, v. 23, p. 195-209.

    Harry, H.W., 1985, Synopsis of the superaspecific classification of living oysters(Bivalvia: Gryphaeidae and Ostreidae): The Veliger, v. 28, p. 121-158.

    Hays, P.D., and Grossman, E.L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate: Geology, v. 19, p. 441-444.

    Hoefs, J., 1987, Stable Isotope Geochemistry.: Springer-Verlag. New York, 241 p.

    IAEA (International Atomic Energy Agency), 1987, Absorbed dose determination in photon and electron beams.: Vienna, Austria.

    James, N.P., Bone, Y., and Kyser, T.K., 1997, Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia: Geology, v. 25, no. 6, p. 551-554.

    Jones, D.S., and Allmon, W.D., 1995, Records of upwelling, seasonality and growthin stable-isotope profiles of Pliocene molluck shells from Florida: Lethaia, v. 28, p. 61-74.

    Kaplan, M.R., Wolfe, A.P., and Miller, G.H., 2002, Holocene Environmental Variability in Southern Greenland Inferred from Lake Sediments.: Quaternary Research, v. 58, p. 149-159.

    Kennedy, V.S., Newell, R.I.E., and Eble, A.F., 1996, The Eastern Oyster Crassostrea virginica. College Park, MD: Maryland Sea Grant.

    Kent, B.W., 1992, Making Dead Oysters Talk: Techniques for Analyzing Oysters from Archaeological Sites. Crownsville, MD: Maryland Historical and Cultural Publications.

    Kent, R.W., 1988, Making dead oysters talk: Techniques for analyzing oysters from archaeoloogical sites: Maryland Historical Trust, St. Marys City, 107 p.

    Kirby, M.X., 2000, Paleocological differences between teriary and quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology.: Palaios, v. 15, p. 132-141.

    Kirby, M.X., Soniat, T.M., and Spero, H.J., 1998, Stable Isotope Sclerochronology of Pleistocene and Recent Oyster (Crassostrea virginica): Palaios, v. 13, p. 560-569.

    Kobashi, T., and Grossman, E.L., 2003, The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38Ma) climate: Paleontological research, v. 7, no. 4, p. 343-355.

    Krantz, D.E., Williams, D.F., and Jones, D.S., 1987, Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 58, p. 249-266.

    Kuroda, T., 1941, A catalogue of molluscan shells from Taiwan(Formosa), with description of new species.: Memoirs of the Faculty of Science and Agriculture. Taihoku Imperial University, vol. 22, p. 66-216

    Lawrence, D.R., 1988, Oysters as geoarchaeologic objects: Geoarchaeology, v. 3, p. 267-274.

    Lawrence, D.R., 1995, Diagnosis of the genus Crassostrea (Bivalvia, Ostreidae): Malacologia, v. 36, p. 185-202.

    Libes, S.M., 1992, An introduction to marine biogeochemistry New York :Wiley, p. 81-82.

    Liew, P.M., and Huang, S.Y., 1994, A 5000 year pollen record from Chitsai lake, in Central Taiwan.: Terrestrial, Atmospheric and Oceanic Sciences, v. 5, p. 411-420.

    Lorio, W.J., and Malone, S., 1994, The cultivation of American oysters (Crassostrea virginica): Southern Regional Aquaculture Center Publication No. 432.

    Martinus, A.W., 1991, Growth rates and population dynamics in Crassostrea cf. rarilamella from the Lower Eocene Roda Formation (southern Pyrenees, Spain): Geologie en Mijnbouw, v. 70, p. 59-73.

    McConnaughey, T.A., 1989a, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns: Geochimica et Cosmochimica Acta, v. 53, p. 151-162.

    McConnaughey, T.A., 1989b, 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects.: Geochimica et Cosmochimica Acta, v. 53, p. 163-171.

    Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.

    Milner, N., 2001, At the cutting edge: using thin sectioning to determine season of death of the European Oyster, Ostrea edulis: Journal of Archaeological Science, v. 28, p. 861-873.

    Mook, W.G., 1971, Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate oxygen isotopes in shell carbonate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 9, p. 245-263.

    Moore, R. C. 1971. Treatise on Invertebrate Paleontology, Part N Bivalvia: The Geological Society of America, Inc, vol. 3, p. 954-1218.

    Nichols, H., 1975, Palynological and paleoclimates study of the late Quaternary displacement of the boreal forest-tundra Eocene in Keewatin and MacKenzie, N.W.T.: Institute of Arctic and Alpine research occasional paper, v. 15.

    O'Neil, J.R., Clayton, R.N., and Mayeda, T.K., 1969, Oxygen isotope fractionation on divalent metal carbonates: Journal of Chemical Physics, v. 51.

    Pachauri, R.K., and Reisinger, A., 2007, Fourth Assessment Report (AR4): Climate Change 2007: Switzerland, Geneva, Intergovernmental Panel on Climate Change(IPCC), 104 p.

    Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D., 2000, Cathodoluminescence in Geosciences: New York, Springer, 514 p.

    Pannella, G., and MacClintlock, C., 1968, Biological and environmental rhythms reflected in molluscan shell growth.: Journal of Paleontology, v. 42, p. 64-80.

    Perry, C.A., and Hsu, K.J., 2000, Geophysical, archaeological, and historical evidence support a solaroutput model foe climate change: Proceedings of National Academy of Science of USA., v. 97, p. 12433-12438.

    Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pe´ pin, L., Ritz, C., Saltzmank, E., and Stievenard, M., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature, v. 399, p. 429-436.

    Pierson, B.J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.

    Pregill, G.K., and Olson, S.L., 1981, Zoogeography of West Indian Vertebrates in Relation to Pleistocene Climatic Cycles.: Annual Review of Ecology and Systematics, v. 12, p. 75-98.

    Richardson, C.A., Seed, R., Al-Roumaihi, E.M.H., and McDononald, L., 1993, Distribution, shell growth and predation of the New Zealand oyster, Tiostrea (= Ostrea) lutaria Hutton in the MenaiStrait: North Wales: Journal of Shellfish Research, v. 12, p. 207-214.

    Sambol, M., and Finks, R.M., 1977, Natural selection in a Cretaceous oyster: Paleobiology, v. 3, p. 1-16.

    Senturk, F., Bursali, S., Omay, Y., Ertan, I., Guler, S., Yalcin, H., and Onhan, E., 1970, Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology 1970, IAEA, Vienna, p.53-64.

    Shen, J., Jones, R.T., Yang, X., Dearing, J.A., and Wang, S., 2006, The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings.: Holocene, v. 16, p. 265-276.

    Spero, H.J., Bijima, J., W., L.D., and Bemis, B.E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, p. 497-500.

    Spicer, R.A., 1989, The Formation and Interpretation of Plant Fossil Assemblages 1989, v. 16.

    Stenzel, H.B., 1963, Aragonite and calcite as constituents of adult oyster shells: Science, v. 142, p. 232-233.

    Stenzel, H.B., 1971, Oysters: in Moore,R.c., ed., Treatise on invertebrate paleontology: Geological Society of America and University of Kansas, Part N, v. v.3,Mollusca 6, Bivalvia, p. N953-N1224.

    Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry- An Introduction Emphasizing Chemical Equilibria in Natural Waters: Taipei, 780 p.

    Surge, D.M., Lohmann, K.C., and Dettman, D.L., 2001, Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, p. 283-296.

    Surge, D.M., Lohmann, K.C., and Dettman, D.L., 2003, Reconstructing estuarine conditions: oyster shells as recorders of environmental change, Southwest Florida: Estuarine Coastal and Shelf Science, v. 57, p. 737-756.

    Swart, P.K., 1983, Carbon and oxygen isotope fractionation in scleractinian coarals: a review: Earth Science Review, v. 19, p. 51-80.

    Swart, P.K., Healy, G.F., Dodge, R.E., Kramer, P., Hudson, J.H., Halley, R.B., and Robblee, M.B., 1996, The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: A 160 year record of climatic and anthropogenic influence: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 123, p. 219-237.

    Urey, H.C., 1947, The thermodynamic properties of isotopic substances: Journal of Chemical Society pt. 1, p. 562-581.

    Valentin, H., 1952, Die Kusten der Erde. Petermanns Geographische Mitteilungen, 246 p.

    van der Straaten, C.M., and Mook, W.G., 1983, Stable isotopic composition of precipitation and climatic variability. In: Palaeoclimates and Palaeowaters, IAEA, Vienna, 53-64 p.

    Wang, H., Keppens, E., Nielsen, P., and van Riet, A., 1995, Oxygen and carbon isotope study of the Holocene oyster reefs and paleoenvironmental reconstruction on the northwest coast of Bohai Bay, China: Marine Geology, v. 124, p. 289-302.

    Wefer, G., and Berger, W.H., 1980, Stable isotopes in benthic foraminifera: Seasonal variation in large tropical species: Science, v. 209, p. 207-248.

    Whyte, M.A., 1975, Time, tide, and the cockle. In Growth Rhythms and the History of the Earth's Rotation. (G. D. Rosenburg and S. K. Runcorn, Eds) London: John Wiley and Sons, p. 177–189.

    Wierzbowski, H., and Joachimski, M., 2007, Reconstruction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland) : Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 523-540.

    Wu, W.L., 1980, The List of Taiwan Bivalve Fauna.: Quarterly Journal of the Taiwan Museum, v. 33, p. 55-208.

    下載圖示
    QR CODE