簡易檢索 / 詳目顯示

研究生: 黃振祐
Chen-yu Huang
論文名稱: 沖繩海槽岩心近四萬年以來之高解析度古海洋/古氣候變遷記錄
High-resolution Paleoceanography / Paleoclimate fluctuation records from the Okinawa trough cores for the past 40kyrs
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 99
中文關鍵詞: 沖繩海槽古氣候古海洋黑潮烯酮類不飽和脂肪酸西太平洋海水表層溫度碳酸鈣
英文關鍵詞: Okinawa trough, paleoclimate, paleoceanography, kuroshio, Uk-37, Western Pacific, SST, carbonate
論文種類: 學術論文
相關次數: 點閱:301下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分析在沖繩海槽北段深海岩心MD982195 (北緯31度38.33分,東經128度56.63分,水深746公尺)及其鄰近CSH-2(北緯29度25.0分,東經126度34.0分,水深703公尺)岩心中高解析度(前者65-90年;後者30-140年)之烯酮類不飽和脂肪酸( )指標、碳酸鹽及有機碳含量,以研究過去四萬年以來之沖繩海槽附近海域古海洋/古氣候變化。
MD982195岩心長度33.6公尺,為良好而連續的沈積,含有兩層火山灰沈積物;CSH-2岩心長度7.3公尺。兩根岩心經碳十四定年及浮游有孔蟲氧同位素分析的結果顯示岩心底部分別為末次冰期的氧同位素地層第三階及第二階。
兩根岩心的碳酸鹽含量變化均表現出冰期低、間冰期高的大西洋型碳酸鈣地層 型式,同時陸源有機物質在冰期時大幅增加,並帶來豐富的營養鹽,顯見本區域之沈積特性深受陸源物質的輸入及稀釋作用影響;與其他西太平洋邊緣海的五根岩心之碳酸鈣含量記錄相同。MD982195及CSH-2岩心的有機碳含量比南海及沖繩海槽北段其他的岩心高,除了因為陸源有機碳的輸入量較大之外,岩心位於海水剖面中的氧氣含量最低帶,使得有機碳的保存特別良好應也有關係。基本上有機碳也呈現冰期低間冰期高的現象,可見陸源物質同時對於有機碳含量產生稀釋效應。
古溫度結果呈現明顯的冰期—間冰期的氣候旋回特徵,冰期比間冰期較冷約5℃,本研究結果顯示沖繩海槽北段在冰期—間冰期的溫差較沖繩海槽中段及南海的古溫度溫差為高,顯示冰期—間冰期的溫度差異隨緯度增加而加大。沖繩海槽北段的氣候、溫度關係和北半球有一致的變化,約於17-18 ka達到最低溫;千年尺度的溫度變化量隨著時間而遞減,古溫度在Interstadial 8以前可達2℃,在間冰期僅達0.5℃。由表層海水古溫度記錄及浮游有孔蟲氧同位素數值的比較,可以發現在四萬年以來有數次千年至百年尺度的鹽度變化事件,可能與中國大陸河川的淡水注入量變化有關。記錄並顯示約於800-1500 BP有一低溫事件,溫度可下降達2℃,與新仙女木事件的變化等量;而在約9000 BP有一高溫事件,推論可能有地下熱源的區域性影響,也有可能與黑潮的加強有關,尚待進一步研究。

Two deep-sea cores(MD982195, 31°38.33’N, 128°56.63’E, water depth 746m; CSH-2, 29°25.0’ N, 126°34’ E, water depth 703m) retrieved from the Okinawa Trough, Western Pacific were studied to unravel the high resolution (65-90 years; 30-140 years, respectively) paleoceanography and paleoclimate records of the Okinawa Trough for the last 40 kyrs. Proxies adopted in this study include alkenone index, carbonate fraction, and organic carbon content.
Core MD982195 (33.6 m long) shows continuous and homogenous sedimentation with two vocanic ash layers. The length of core CSH-2 is 7.3 m. Several 14C datings together with planktonic foraminiferal δ18O stratigraphy show the bottom of the cores are respectively down to stage 3(MD982195) and stage 2(CSH-2) in the last glacial period.
Carbonate stratigraphy in both cores shows the typical Atlantic pattern, which the carbonate content is high in the interglacial period and low in glacial time. Terrestrial organic matter concentration increase in the glacial period giving this area planty of nutrient. Obviously, the sedimentation character of the Okinawa Trough is heavily influenced by terrigeous input and its dilution effect. This trend is the same as those records recorded in other five cores along the western Pacific marginal seas.
The organic carbon content in both cores are quite high compare with other records in the South China Sea and Okinawa Trough. This is probably because of great terrestrial organic matter input and the water depth of the cores falls in the oxygen minimum zone in the water column where always have better preservation in organic matter.
The paleo-sea surface temperature (SST) record which is almost parallel with oxygen isotope curve shows that the SST of glacial time was about 5℃ cooler than that of interglacial time in the Okinawa Trough. Similar to other records of northern hemisphere, the lowest paleo-SST occurred at 17-18 ka in the last glacial maximum. The millennial paleo-SST fluctuation magnitude decrease gradually since the glacial period of time. The magnitude reaches 2℃ before IS. 8 but only 0.5℃ in the interglacial period of time. When we compare the record with oxygen isotope record, we can find there are several salinity change events in the last 40kyrs, which might be related to the input of the fresh water from China continent. The record also shows that there are two special paleo-SST change events. One is a 2℃ cooling event occure at 800-1500BP which is the same magnitude as the Younger Dryas event. The other is a warming event around 9000 BP, which might be the result of the strengthen of the Kuroshio current or regional hydrothermal effect. Both of them needs to be further studied.

ABSTRACT…………………………………………………………V 摘要………………………………………………………………….VII 題獻………………………………………………………………….IX 致謝………………………………………………………………….X 目錄………………………………………………………………….XI 圖目………………………………………………………………….XIV 表目…………………………………………………………......XVIII 一、緒論………………………………………………………….…1 1.1研究現況…………………………………………………...3 1.2研究目的…………………………………………………...10 二、研究材料及方法……………………………………………….11 2.1研究材料…………………………………………………...11 2.2原理及方法……………………………………………...…11 2.2.1碳酸鈣含量……………………………………...….12 2.2.2有機碳含量…………………………………………12 2.2.3碳酸鹽及有機碳測量步驟…………………………13 2.2.4烯酮類不飽和指標: index…………………...13 2.2.5 index的萃取步驟(修改自 王嘉群,1999)…………………………..…………14 2.2.6氣相層析儀分析方法…………………………...….15 2.2.7陸源有機物質………………………………...…….16 2.2.8表層生產力…………………………………………17 2.3計算方法…………………………………………………...17 2.3.1碳酸鈣含量…………………………………………17 2.3.2海水表層溫度…………………………………..…..18 2.3.3陸源有機物質………………………………………18 2.3.4表層海水生產力………………………………...….19 2.3.5沈積速率……………………………………...…….19 三、結果………………………………………………………….....21 3.1 岩心年代模式………………….………………………….21 3.2 地球化學分析結果………………………………………..25 3.2.1 碳酸鈣含量………………………………………....25 3.2.2 有機碳含量………………………………………....31 3.3 氣相層析儀(GC)分析結果………………………………..33 3.3.1 海水表層溫度……………………………………....33 3.3.2 陸源有機物質………………………………...….…39 3.3.3 表層生產力…………………………………….…...39 四、討論………………………………………………………….....44 4.1 碳酸鹽含量…………………………………….………….44 4.2 西北太平洋邊緣海的古海水溫度記錄比較……………..48 4.3 新仙女木事件…………………………………….……….53 4.4 千年尺度高頻變化………………………………………..55 4.5 古溫度與氧同位素的比較………………..…………..56 4.6 其他氣候變遷事件…………………………………….….59 4.7 陸源有機物質沈積及表層生產力記錄…………………..60 五、結論…………………………………….………………………62 六、參考文獻…………………………………….…………………64 附錄一…………………………………….…………………………73 附錄二…………………………………….…………………………86 附錄三…………………………………….…………………………93 附錄四…………………………………….…………………………98

An, Z.-S., Liu. T.-S., Lu, Y.-C., Poter, S. C., Kukla, G., Wu, X.-H., and Hua, Y.-M., 1990, The long-term paleomonsoon variation recorded by the Loess paleosol sequence in central China: Quaternary International 7/8, p.91-95.
An, Z.-S., Kukla, G., Porter, S. C., and Xiao, J.-L., 1991, Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years: Quaternary Reasearch, v.36, p.29-36.
An, Z.-S., 2000, The history and variability of the East Asia paleomonsoon climate: Quaternary Science Review, v.19, p.171-187.
An,Z.-S., Porter, S. C., Zhou, W.-J., Lu, Y.-C., Donahue, D. J., Head, M. J., Wu, X.-H., Ren, and J.-Z.,Zheng, H.-B., 1993, Episode of strengthened summer monsoon climate of Younger Dryas age ov the Loess Plateau of central China: Quaternary Reasearch, v.39, p.45-54.
Berger, W. H., Adelseck, C. G., Jr., and Mayer, L. A., 1976, Distribution of carbonate in surface sediments of the Pacific ocean: Journal of Geophysical Research, v.81(15), p.2617-2627.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M., 1986, Molecular stratigraphy: A new tool for climatic assessment: Nature, v.320, p.129-133.
Chapman, M.R., and Shackleton, N.J., 1998, Millennial-scale fluctuations in North Atlantic heat flux during the last 150,000 years: Earth and Planetary Science Letters, v.159, p.57-70.
Chen, M.-P., Huang, C.-K., Lo, L., and Wang C.-H., Late Pleistocene paleoceanography of the Kuroshio current in the area offshore southeast Taiwan: Terrestrial, Atmospheric and Oceanic Sciences, v.3(1), p.81-110.
Chen, Y.-Y., Chen, M.-T., and Fang, T.-S., 1999, Biogenic sedimentation patterns in the North South China Sea: An ultrahigh-resolution record MD982148 of the past 150,000 years from the IMAGES Ⅲ-IPHIS Cruise: Terrestrial, Atmospheric and Oceanic Sciences, v.10(1), p.215-224.
Conte, M. H. and Eglinton, G., 1993, Alkenone and alkenoate distributions within the euphotic zone of the eastern north Atlantic: correlations with production temperature: Deep-Sea Research, v.40(10), p.1935-1961.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffenson, J. P., Sveinbjornsdottir, A. E., Jouzel, J., Bond, G., 1993, Evidence for general instability of past climate from a 250-kyr ice-core record: Nature, v.374, P.218-220
De Leeuw, J. W., Meer, F. W. van der., Rijpstra, W. I. C. and Schenck, P. A., 1980, On the occurrence and structural identification of long chain unsaturated alkenones and hydrocarbons in sediment: Advances in organic geochemistry 1979, Douglas, A. G. and Maxwell, J. R., editors, Pergamon Press, Oxford, p.211-217.
DeMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M., 2000, Coherent high- and low-latitude climate variability during the Holocene warm period: Science, v.288, p.2198-2202.
Fairbanks, R. G., 1989, Glacial-eustatic sea level record 0-17,000 years before present; influence of glacial melting rates on Younger Dryas "event" and deep ocean circulation: Nature, v.342, p.637-642.
Fan, K.-L., 1985, CTD measurements in the seas around Taiwan during 1977-1983. Inst. Oceanogr., N. T. U., Special Publi., v. 44, p.337.
Fan, K.-L., 1985, CTD measurements in the seas around Taiwan during 1993-1985. Inst. Oceanogr., N. T. U., Special Publi. v. 51, p.183.
Farrell, J. W., and Prell, and W. L., 1991, Pacific CaCO3 preservation and δ18O since 4 Ma: Paleoceanographic and paleoclimatic implications: Paleoceanography, v.6(4), p.485-498.
Hastings, D. W., Russell, A. D., and Emerson, S. R., 1998, Foraminiferal magnesium in G. sacculifer as a paleotemperature proxy in the equatorial Atlantic and Carribean surface oceans, Paleoceanography, v.13(2), p.161-169.
Hays, P. D., and Grossman, E. T., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p.953-965.
Heinrich, H., 1988, Origin and consequence of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years: Quaternary Research, v.29, p.142-152
Hendy, I. L., and Kennett, J. P., 1999, Latest Quaternary North Pacific surface-water responses imply atmosphere-driven climate instability: Geology, v.27(4), p.291-294.
Huang, C.-Y., Wu, S.-F., Zhao, M.-X., Chen, M.-T., Wang, C.-H., Tu, X., and Yuan, P. B., 1997a, Surface ocean and monsoon climate variability in the South China Sea since the last glaciation: Marine Micropaleontology, v.32, p.71-94.
Huang, C.-Y., Liew, P.-M., Zhao, M.-X., Chang, T.-C., Kuo, C.-M., Chen, M.-T., Wang, C.-H., and Zheng, L.-F., 1997b, Deepsea and lake records of the Southeast Asia paleomonsoons for the last 25 thousand years: Earth and Planetary Science Letters, v.146, p.58-72.
Huang, C.-Y., Wang, C.-C., and Zhao, and M.-X., 1999, High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea: Terrestrial, Atmospheric and Oceanic Sciences, v.10(1), p.225-238.
Iseki, K., Okamura, K., and Tsuchiya, Y., 1994, Seasonal variability in particle distributions and fluxes in the East China Sea: Proceedings of the 1994 Sapporo IGBP Symposium, p.189-197.
Jasper, J. P., and Gagosian, R. B., 1993, The relationship between sedimentary organic carbon isotopic composition and organic biomarker compound comcentration: Geochimica et Cosmochimica Acta, v.57, p.167-186.
Keigwin, L. D., Curry, W. B., Lehman, S. J., and Johnsen, S., 1994, The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago: Nature, v.371, p.323-326.
Keigwin, L. D., 1996, The little ice age and medieval warm period in the Sargasso sea, Science, v.274, p.1503-1508.
Le J., and Shackleton, N. J., 1992, Carbonate dissolution fluctuations in the western equaterial Pacific during the late Quaternary: Paleoceanography, v.7(1), p.21-42.
Li, T.-G., Yan, J., Cang, S.-X., Oxygen isotope records and paleoenvironment analysis in core RD-82 and core RD-86 in the north of the Okinawa Trough: Marine Geology & Quaternary geology, v.16(2), p.57-64.
Liew, P.-M. and Huang, S.-Y., 1994, A 5000-year pollen records from Chitsai Lake, central Taiwan: Terrestrial, Atmospheric and Oceanic Sciences, v.5(3), p.411-419.
Luz, B., and Shackleton, N. J., 1975, CaCO3 solution in the tropical East Pacific during the past 130,000 years: Cushman Found, Foraminifera Research, special publicity, v.113, p.142-150.
Machida, H., and Arai, R., 1978, Akahoya Ash—a Holocene widespread Tephra erupted from the Kikai Caldera, South Kyushu, Japan: Quaternary Reasearch, v.17(3), p.143-163.
Madureira, L. A. S., Conte, M. H., and Eglinton, G., 1995, Early diagenesis of lipid biomarker compounds in North Atlantic sediments: Paleoceanography, v.10(3), p.627-642.
Madureira, L. A. S., van Kreveld, S. A., Eglinton, G., Conte, M. H., Ganssen, G., van Hinte, J. E., and Ottens, J. J., 1997, Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core: Paleoceanography, v.12(2), p.255-269.
Marlowe, I. T., Brassell, S. C., Eglinton, G. and Green, J. C., 1984, Long chain unsaturated ketones and esters in living algae and marine sediments: Organic Geochemistry, v.6, p.135-141.
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, Jr., and Shackleton, N. J., 1987, Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy: Quaternary Reasearch, v.27, p.1-29.
McManus, J. F., Bond, G. C., Broecker, W. S., Johnsen, S., Labeyrie, L., and Higgins, S., 1994, High-resolution climate records from the North Atlantic during the last interglacial: Nature,v. 371, p.326-329.
Moore, T. C., Jr., Burckle, L. H., Geitzenauer, K., Luz, B., Molina-cruz, A., Robertson, J. H., Sachs, H., Sancetta, C., Thiede, J., Thompson, P., and Wenkam, C., 1980, The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P: Marine Micropaleontology, v.5, p.215-247.
Moore, T. C. Jr., Pisias, N. G., and Keigwin, L. D. Jr., 1982, Cenozoic variability of oxygen isotopes in benthic foraminifera: Climate in Earth History, National Academy Press, p.172-182.
Murayama, M., Matsumoto, E., Nakamura, T., Okamura, M., and Yasuda, H., Taira, A., 1993, Re-examination of the eraption age of Aira-Tn Ash (AT) obtained from a piston core off Shikoku — determined by AMS 14C datings of planktonic foraminifera: J. Geol. Soc. Jpn., v.99(10), p.787-798.
Nurnberg, D., Bijma, J., and Hemleben, C., 1996, Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures: Geochimica et Cosmochimica Acta, v.60, p.803-814.
Nurnberg, D. and Muller, A., 2000, Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates form Uk'37, oxygen isotopes, and foraminiferal transfer funtion: Paleoceanography, v.15(1), p.124-134.
O’Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1976, Oxygen isotopes composition of the oceanic crust and its bearing on seawater: Journal of Chemical Physics, v.51, p.5547-5558.
Prahl, F. G. and Wakeham, S. G., 1987, Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment: Nature, v.330, p.367-369.
Prahl, F. G., Muehlhausen, L. A. and Zahnle, D. L., 1988, Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions: Geochimica et Cosmochimica Acta, v.52, p.2303-2310.
Sawada, K. and Handa, N., 1998, Variability of the path of the Kuroshio ocean current over the past 25,000 years: Nature, v.392, p.592-595.
Schneider, R., 2001, Alkenone temperature and carbon isotope records: Temporal resolution, offsets, and regionality: Geochemistry, Geophysics, Geosystems, v.2(Review), 2000GC000060. (Available at http://www.g-cubed.org).
Shackleton, N. J., and Opdyke, N. D., 1977, Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperature and ice volume on a 105 years and 106 years scale: Quaternary Reasearch, v.3, p.39-55.
Shieh, Y.-T. and Chen, M.-P., 1995, The Ancient Kuroshio Current in the Okinawa Trough during the Holocene: Acta Oceanographica Taiwanica, v.34(4), p.73-80.
Sikes, E. L., Farrington, J. W. and Keigwin, L. D., 1991, Use of the alkenone unsaturation ratio Uk37 to determine past sea surface temperature: core-top SST calibrations and methodology considerations: Earth and Plantary Scinece Letters, v.104, p.36-47.
Sikes, E. L. and Volkman, J. K., 1993, Calibration of alkenone unsaturation ratios (Uk'37) for paleotemperature estimation in cold polar waters: Geochimica et Cosmochimica Acta, v.57, p.1883-1889.
Saito, Y., and Yang, Z., 1994, Historical change fo the Huanghe (Yellow River) and its impact on the sediment budget fo the East China Sea: Proceedings of the 1994 Sapporo IGBP Symposium, p.7-12.
Takemoto, A. and Oda, M., 1997, New Planktic foraminiferal transfer funtions for the Kuroshio-Oyashio Current region off Japan: Paleontological Research, v.1(4), p.291-310.
Ujiie, H. and Ujiie, Y., 1999, Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean: Marine Micropaleontology, v.37, p.23-40.
Ujiie, H., Hatakeyama, Y., Gu, X.-X., Yamamoto, S., Ishiwatari, R., and and Maeda, L., 2001, Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line: Paleogeography, Paleoclimatology, Paleoecology, v.165, p.129-140.
Volkman, J. K., Eglinton, G., Corner, E. D. S. and Sargent, J. R., 1980, Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a cocoolithophorid Emiliania huxleyi: In: Advances in organic geochemistry 1979, Douglas, A. G. and Maxwell, J. R., editors, Pergamon Press, Oxford, p.219-227.
Volkman, J. K., Barrett, S. M., Blackburn, and S. I., Sikes, E. L., 1995, Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate: Geochimica et Cosmochimica Acta, v.59, p.513-520.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U., 1999, East Asia monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea: Marine Geology, v.156, p.245-284.
Xiao, J.-L., Porter, S. C., An, Z.-S., Hisao, K.-M., and Yoshikawa, S., 1995, Grain size of Quartz as an indicator of winter monsoon strength of the Loess Plateau of Central China during the last 130,000 yr: Quaternary Reasearch, v.43, p.22-29.
Xu, X.-D. and Oda, M., 1999, Surface-water evolution of the eastern East China Sea during the last 36,000 years: Marine Geology, v.156, p.285-304.
Xu, Y.-L., and Su, X., 1987, Holocene calcareous nannofloral assemblage from the Okinawa Trough with discussion on Holocene paleoclimate: Acta Micropalaeontological Sinica, v.4(4), p.335-344.
Yanagi, T., and Inoue, K.-I., 1995, A numerical experiment on the sedimentation processes in the Yellow Sea and the East China Sea: Journal of Oceanography, v.51, p.537-552.
Zhang, Z.-W., 1988, Foraminifera fauna and ancient climate of central Okinawa Trough since late pleistocene: Marine Geology & Quaternary Geology, v.8(1), p.31-41.
王嘉群,1999,南中國海IMAGES深海岩心MD972151最近十五萬年之高解析度古季風/古海洋變化記錄與機制,國立台灣大學碩士論文,83頁。

QR CODE