簡易檢索 / 詳目顯示

研究生: 阮黎簪
Nguyen Le Tram
論文名稱: Interval valued optimization problems on Hadamard manifolds
Interval valued optimization problems on Hadamard manifolds
指導教授: 陳界山
Chen, Jein-Shan
口試委員: 陳界山
Chen, Jein-Shan
張毓麟
Chang, Yu-Lin
杜威仕
Du, Wei-Shih
許瑞麟
Sheu, Ruey-Lin
林仁彥
Lin, Jen-Yen
口試日期: 2024/01/05
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 74
英文關鍵詞: Hadamard manifolds, interval variational inequalities, gH-diffirentiable, optimality condition, penalized, interval valued function, set valued function on manifolds
研究方法: 實驗設計法紮根理論法
DOI URL: http://doi.org/10.6345/NTNU202400044
論文種類: 學術論文
相關次數: 點閱:170下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we study the interval valued optimization problems (IOPs)
    on Hadamard manifolds, including unconstrained and constrained problems. To
    achieve the theoretical results, we build up some new concepts about gH-directional derivative, gH-Gâteaux and gH-Fréchet differentiability of interval valued functions with their properties on Hadamard manifolds. More specifically, we characterize the optimality conditions for the IOPs on the Hadamard manifolds. For unconstrained problems, the existence of efficient points and the steepest descent algorithm are investigated. To the contrast, the optimality conditions, exact penalty, and duality approach are explored in the ones involving inequality constraints. The obtained results pave a way to further study on Riemannian interval optimization problems (RIOPs).

    Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii List of Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introduction and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 Contribution and Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.1 Interval analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.2 Notations on Riemannian manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.3 Interval valued functions on Riemannian manifolds. . . . . . . . . . . . . . . .14 2.3.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.3.2 gH-continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.3.3 gH-directional differentiability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.3.4 gH-G^ateaux differentiability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 gH-Fr´echet differentiability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3 Unconstrainted interval valued optimization problem on Hadamard manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.1 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.2 Existence of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 3.3 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 3.4 Riemannian interval inequality problems . . . . . . . . . . . . . . . . . . . . . . . . . .50 4 Constrained interval valued optimization problem on Hadamard manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 53 4.2 Exact penalty approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

    [1] P. A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix manifolds, Princeton University Press, Princeton, NJ, 2008.
    [2] I. Aguirre-Cipe, R. Lopez, E. Mallea, and L. Vasquéz, A study of interval optimization problems, Optimization Letters, 15(3), 859-877, 2021.
    [3] J.P.Aubin, A.Cellina, Differential Inclusions, SpringerVerlag,NewYork,1984.
    [4] M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, 2014.
    [5] G.C. Bento, O.P. Ferreira, and P.R. Oliveira, Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds, Nonlinear Analysis: Theory, Methods and Applications, 74(2), 564-572, 2010.
    [6] G.C. Bento, O.P. Ferreira, and P.R. Oliveira, Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds, Journal of Optimization Theory and Applications, 154(1),88-107, 2012
    [7] G.C. Bento and J. Melo, Subgradient method for convex feasibility on Riemannian manifolds, Journal of Optimization Theory and Applications, 152(3), 773-785, 2012.
    [8] A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Mathematical Method of Operations Research, 76(3), 273-288, 2013.
    [9] N. Boumal, An Introduction to Optimization on Smooth Manifolds, Cambridge University Press., November 2020.
    [10] S.I. Chen and N.J. Huang, Generalized invexity and generalized invariant monotone vector fields on Riemannian manifolds with applications, Journal of Nonlinear and Convex Analysis, 16(7), 1305-1320, 2015.
    [11] S.I. Chen, The KKT optimality conditions for optimization problem with interval-valued objective function on Hadamard manifolds, Optimization, 71(3), 613-632, 2022.
    [12] V. Colao, G. Lopez, G. Marino, V. M. Marquéz , Equilibrium problem in Hadamard manifolds, J. Math. Anal. Appl., 338, 61-77, 2012.
    [13] R.W. Cottle, Complementarity and Variational Problems, Defense Technical Information Center, 1974.
    [14] P. Diamond and P. E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, 1994.
    [15] M.P. do Carmo, Riemannian Geometry, Birkh¨auser Boston, 1992.
    [16] J.X. Da Cruz Neto, O.P. Ferreira, L.R. Lucambio Perez, S.Z. Nemeth, Convex and monotone transformable mathematical programming problems and a proximal-like point method, J. Glob. Optim. 35, 53{69 (2006).
    [17] M.C. Ferris and J.S. Pang, Complementarity and Variational Problems: State of the Art, Proceedings in Applied Mathematics, Society for Industrial and Applied Mathematics, 1997.
    [18] D. Ghosh, Newton's method to obtain efficient solutions of the optimization problems with interval-valued objective functions, Journal of Applied Mathematics and Computing, 53(1-2), 709-731, 2017.
    [19] D. Ghosh, R. Chauhan, R. Mesiar, and A. Debnath, Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions, Information Sciences, 510(4), 317-340, 2020.
    [20] B.C. Hall, Lie groups, Lie algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 2015.
    [21] W.L. Huang, Optimization algorithms on Riemannian manifolds with applications, PhD. thesis, Florida State University, 2013.
    [22] H. Ishibuchi, H. Tanaka, Multiobjective programming in optimization of the interval objective function, Eur J Oper Res 48(2):219- 225, 1990.
    [23] M. Jana, G. Panda, Solution of nonlinear interval vector optimization problem. Oper. Res. Int. J. 14, 71{85 (2014).
    [24] A. Jayswal, I. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval valued programming problems, Applied Mathematics and Computation, 218, 4119{4127, 2011.
    [25] A. Jayswal, J. Banerjee, An exact l1 penalty approach for interval valued programming problem, J. Oper. Res. Soc. China, 4, 461-481, 2016.
    [26] J. Jost, Riemannian Geometry and Geometric Analysis, Universitext Book Series, Springer, Berlin Heidelberg, 2011.
    [27] P. Kumar, G. Panda, U.C. Gupta, Generalized quadratic programming problem with interval uncertainty, FUZZ IEEE 2013. In: 2013 IEEE international conference on Fuzzy systems (FUZZ), 2013.
    [28] D. Kinderlehrer, and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classical in Applied Mathematics 31, Society for Industrial and Applied Mathematics, 2000.
    [29] V. Lakshmikantham, T.G. Bhaskar, and J.V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, 2005.
    [30] C. Li, G. Lopez, V. M. Marquéz, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc., 79(2), 663-683, 2009.
    [31] C. Li, B. Mordukhovich, J. Wang, and J.-C. Yao, Weak sharp minima on Riemannian manifolds, SIAM Journal on Optimization, 21(4), 1523-1260, 2011.
    [32] S. Markov Sofia, Calculus for Interval Functions of a Real Variable, Computing 22, 325{337 (1979).
    [33] R. Osuna-Gomez, Y. Chalco-Cano, B. Hernandez-Jimenez and G. Ruiz-Garzon, Optimality conditions for generalized differentiable interval valued functions, Information Sciences, 321, 136{146, 2015.
    [34] P. Petersen, Riemannian Geometry, Springer International Publishing, 2016.
    [35] S. Schaffler, R. Schultz, and K. Weinzierl, Stochastic method for the solution of unconstrained vector optimization problems, J. Optim. Theory Appl., vol. 114, pp. 209{222, 2002.
    [36] L. Stefanini, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71(3-4), 1311-1328, 2008.
    [37] J. Tao, and Z. Zhang, Properties of interval valued function space under the gH-difference and their application to semi-linear interval differential equations, Advances in Difference Equations, 45, 2016.
    [38] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, volume 297, Springer, 1994.
    [39] N.K. Vishnoi, Geodesic Convex Optimization: Differentiation on manifolds, geodesics, and convexity, Lecture Notes, arXiv:1806.06373, 2018.
    [40] P. Wofle, A duality theorem for nonlinear programming, Quarterly of Applied Mathematics, 19(3), 239-244, 1961.
    [41] H.C. Wu, The Karush{Kuhn{Tucker optimality conditions in an optimization problem with interval-valued objective function, European Journal of Operational Research, 176(1), 46-59, 2007.
    [42] H.C. Wu, Wolfe duality for interval-valued optimization, Journal of Optimization Theory and Applications, 138(3), 497-509, 2008.
    [43] J. Zhang, Q. Zheng, X. Ma., and L. Li, Relationships between interval valued vector optimization problems and vector variational inequalities, Fuzzy Optimization and Decision Making, 15(1), 33-55, 2015.

    下載圖示
    QR CODE