簡易檢索 / 詳目顯示

研究生: 朱書漢
Shu-Han Chu
論文名稱: 以軟硬體協同設計之目標物移動方向模糊辨識系統
Hardware/Software Co-Design of a Fuzzy Moving Direction Identification System
指導教授: 許陳鑑
Hsu, Chen-Chien
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 移動估測模糊理論FPGA光流電腦視覺
英文關鍵詞: Motion Estimation, Fuzzy Theory,, FPGA, Optical Flow, Computer Vision
論文種類: 學術論文
相關次數: 點閱:285下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文利用Altera DE2-70實驗板以及模糊邏輯理論,提出一種以軟硬體協同設計之模糊目標物移動方向辨識系統,在SOPC (System on Program Chip, SOPC)之系統架構下,利用FPGA (Field Programming Gate Array)的硬體電路優勢,以軟硬體協同設計 (HW/SW Co-design)之方式實現硬體加速之功能。作法上係利用硬體電路獲得目標物影像之歷史軌跡,並用Nios II計算上、下、左、右方向的計數,再將此計數傳送到模糊邏輯推論的硬體電路,即可得到目標物體的移動方向。實驗結果證實本方法可以利用機器視覺來辨識目標物的移動方向,實現互動式之人機介面,達到控制機器的運作。論文整體架構大致上可分為: (1)以軟體實現此系統的演算法、 (2)將此系統實現於Altera DE2-70開發版之晶片設計,希望利用硬體平行處理的優勢,加速其演算法的速度。

    In this thesis, a hardware and software co-design approach is proposed to develop a fuzzy moving direction identification system using the Altera DE2-70 board and fuzzy logic theory. Under the system architecture of System on the Program Chip (SOPC), we take advantages of the framework of hardware and software co-design, where hardware circuits by Field Programming Gate Array (FPGA) are designed to accelerate the system performance of the historical trajectories of the target image, while direction counts are calculated by the Nios II CPU. A hardware circuit is also design to identify the moving direction of the target object. Experimental results show that the proposed method is able to identify the movement direction of the target direction, providing an interactive man-machine interface to control the operation of the machine. The contents of this thesis can be divided into: (1) proposed algorithm and its implementation by software (2) hardware and software co-design of the proposed algorithm on the Altera DE2-70 development board to accelerate the execution of the proposed algorithm.

    摘  要 I ABSTRACT II 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 3 第2章 模糊邏輯理論 4 2.1 前言 4 2.2 模糊理論基本概念 4 2.3 模糊集合基本運算 5 2.4 模糊控制系統 8 第3章 軟硬體協同設計平台 18 3.1 硬體平台探討 18 3.1.1 DE2-70多媒體開發版 18 3.1.2 D5M擷取模組介紹 20 3.1.3 LTM顯示模組介紹 27 3.2 軟硬體協同設計方法 31 3.2.1 多主從系統架構 31 3.2.2 Master 33 3.2.3 Slave 37 第4章 系統架構及軟體模擬 41 4.1 影像前處理 41 4.1.1 色彩空間轉換 41 4.1.2 影像侵蝕 42 4.1.3 影像膨脹 44 4.2 使用模糊理論之歷史軌跡方向辨識系統 46 4.2.1 色彩空間轉換與即時影像相減 48 4.2.2 灰階區間二值化 48 4.2.3 影像開運算 (Opening Operation) 49 4.2.4 動態能量遞減 (Momentum Decreasing) 50 4.2.5 基於模糊理論之目標物動態方向辨識 52 第5章 以軟硬體協同設計之目標物移動方向模糊辨識系統 61 5.1 色彩空間轉換模組 63 5.2 影像切換模組及即時影像相減 64 5.3 灰階區間二值化模組 65 5.4 歷史軌跡模組 66 5.5 使用SOPC計算上、下、左、右移動方向之計數模組 70 5.6 目標物移動方向模糊辨識模組 72 第6章 實驗結果 76 6.1 軟體模擬 76 6.2 以DE2-70多媒體開發版呈現之實驗結果 84 第7章 結論與未來研究方向 93 7.1 結論 93 7.2 未來研究方向 93 參考文獻 94

    [1] J. F. Shi, C. J. Hua, and G. H. Li, “A simplifying method of vision attention simulating human vision in machine vision system,” IEEE Transaction on Machine Learning and Cybernetics, Qingdao, Jan. 2010, pp. 3097-3100.
    [2] S. Ma, H. Wang, Z. Hao, L. Bai, and H. Yu, “Application research of machine vision technique in intelligent empty bottle inspection system,” IEEE International Conference on Intelligent Control and Automation, Jinan, Jul. 2010, pp. 4462-4466.
    [3] W. Zhang, Q. Zhao, and L. Liao, “Development of a real-time machine vision system for detecting defeats of cord fabrics,” IEEE International Conference on Computer Application and System Modeling, Taiyuan, Oct. 2010, pp. 539-543.
    [4] M. Klosowski, “Hardware accelerated implementation of wavelet transform for machine vision in road traffic monitoring system,” IEEE International Conference on Information Technology, Gdansk, May 2008, pp. 1-4.
    [5] Y. Cao, H. Chen, X. Yu, H. Zang, and X. Li, “Machine vision-based detection system of a cleaning robot for vertical type air-conditioning duct,” IEEE International Conference on Advanced Computer Control, Shenyang, Jun. 2010, pp. 545-548.
    [6] D. Y. Ge, X. F. Yao, and Q. Zhang, “Development of Machine Vision System Based on BP Neural Network Self-learning,” IEEE International Conference on Computer Science and Information Technology, Singapore, Sep. 2008, pp. 632-636.
    [7] 吳怡明 (98年),手勢辨識應用於遙控音樂播放系統,國立台灣科技大學電機工程系碩士論文。
    [8] 洪兆欣 (95年),以軌跡辨識為基礎之手勢辨識系統,國立中央大學資訊工程研究所碩士論文。
    [9] 陳奕豪 (99年),基於人臉追蹤之人機介面,義守大學資訊工程研究所碩士論文。
    [10] 劉東樺 (98年),以適應性膚色偵測與動態歷史歸機影像為基礎之即時手勢辨識系統,大同大學資訊工程研究所碩士論文。
    [11] Altera Corporation, SOPC Builder User Guide, 2010.
    [12] Altera Corporation, Designing With Nios & SOPC Builder, 2010.
    [13] L. Liu, “A Prototyping IP Hardware for SOPC with Single Instruction Driving,” IEEE International Conference on Communications, Circuits and Systems Proceedings, Guilin, Jun. 2006, pp. 559-562.
    [14] F. Yang, C. Deng, and X. Liu, “The design of motion compensation IP core based on SOPC,” IEEE International Conference on Intelligent Control and Information Processing, Dalian, Aug. 2010, pp. 453-457.
    [15] J. Liu, W. Zhang, G. Xu, and D. Wang, “Design of Online Reconstructable SOPC System Based on TCP/IP,” IEEE International Conference on Measuring Technology and Mechatronics Automation, Changsha City, Mar. 2010, pp. 1022-1025.
    [16] S. A. Li, C. C. Hsu, C. C. Wong, and C.J. Yu, “Hardware/Software Co-design for Particle Swarm Optimization Algorithm,” Information Sciences, vol. 181, pp. 4582–4596, Oct. 2011.
    [17] L. Liu, “A reconfigurable SoPC based on HW-SW co-design,” IEEE International Conference on Industrial Technology, Chengdu, Apr. 2008, pp. 1-4.
    [18] L. A. Zadeh, “Fuzzy sets,” Information and Control ,vol. 8, pp.338-353, 1965.
    [19] L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2, pp. 94-102, 1968.
    [20] R. E. Bellman and L. A. Zadeh, “Decision-maling in a fuzzy environment,” Management Science, vol. 17, no. 4, pp. 141-164, 1970.
    [21] L. A. Zadeh, R. E. Kalman, and N. Declaris, Toward a theory of fuzzy system, California, 1971.
    [22] L. A. Zadeh, “Similarity relations and fuzzy ordering,” Information Sciences, vol. 3, no. 2, pp. 177-200, 1971.
    [23] L. A. Zadeh, “Outline of a new approach to the analysis of commplex systems and decision processes,” IEEE Transaction on System, Man, and Cybern. , vol. 3, pp. 28-44, Jan. 1973.
    [24] B. Chen and L. L. Hoberock, “Mashine Vision Recognition of Fuzzy Objects Using a New Fuzzy Neural Network,” IEEE International Conference on Robotics and Automation, Minneapolis, Apr. 1996, pp. 1596-1601.
    [25] J. Killing, B. W. Surgenor, and C. K. Mechefske, “A Neuro-fuzzy Approach to Machine Vision Based Parts Inspection,” IEEE International Conference on Fuzzy Information Processing Society, Montreal, Jun. 2006, pp. 696-701.
    [26] S. Singh and J. S. Saini, “Fuzzy FPGA based captive power management,” IEEE International Conference on Power India Conference, New Delhi, June 2006.
    [27] A. K. Aws, M. Radu, and S. X. Yang, “A Neuro-fuzzy Approach to Machine Vision Based Parts Inspection,” IEEE International Conference on Automation and Logistics, Hong Kong and Macau, Aug. 2010, pp. 539-544.
    [28] V. Kumar, K. P. S Rana, V. Kumar, “Real Time Comparative Study of the Performance of FPGA based PID and Fuzzy Controllers for a Rectilinear Plant,” IEEE International Conference on Power Electronics, New Delhi, Jun. 2011, pp. 1-7.
    [29] 汪惠健,模糊理論與應用,培生教育出版集團, 2006年.
    [30] 友晶科技網址,http://www.terasic.com.tw/tw/
    [31] Terasic Corporation, TRDB_D5M_UserGuide, August 2010.
    [32] Terasic Corporation, THDB-D5M Hardware Specification, 2008.
    [33] Terasic, TRDB_LTM_UserGuide, Document Version 1.22, 2007.
    [34] Terasic Corporation, LTM User Manual.
    [35] 林玟玲,以軟硬體協同設計之混合型即時影像物體追蹤系統,淡江大學電機工程學系碩士班碩士論文 (指導教授:易志孝),2011。
    [36] 李世安,即時目標影像追蹤之SoPC設計,淡江大學電機工程學系博士班博士論文 (指導教授:翁慶昌),2008。
    [37] Altera Corporation, Avalon Interface Specifications, August 2010.
    [38] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 3rd Edition, 2008.
    [39] 劉韋辰,基於FPGA之單移動目標物歷史軌跡方向即時辨識系統,國立臺灣師範大學應用電子科技學系 (指導教授:許陳鑑),2011。
    [40] 維基百科網址,http://zh.wikipedia.org/wiki/%E8%A6%96%E8%A6%BA%E6%9A%AB%E7%95%99

    QR CODE