簡易檢索 / 詳目顯示

研究生: 劉冠麟
Liou, Guan-Lin
論文名稱: 背通道改質對多晶氧化錫薄膜電晶體電性改善之研究
Investigation of Improved Electrical Characterizations of P-Type Tin-Oxide Thin Film Transistors Using Back Channel Modification
指導教授: 鄭淳護
Cheng, Chun-Hu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 薄膜電晶體氧化錫電漿改質
英文關鍵詞: Thin Film Transistor, Tin Oxide, Plasma Treatment
DOI URL: https://doi.org/10.6345/NTNU202202219
論文種類: 學術論文
相關次數: 點閱:207下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先探討通道層退火溫度,以及通道層沉積時的氧氣流量對於P型氧化錫薄膜電晶體的影響。通道層退火150oC時通道仍呈現金屬特性,而退火200oC後則顯示出有利於電晶體整流的半導體特性。此外,沉積氧化錫通道層時的氧氣流量越大有助於氧化錫晶粒成長,能夠提高元件的載子遷移率和驅動電流,但也因為晶粒增加使得漏電流增加,所以在沉積氧化錫時選擇合適的氧流量是很重要的。接著改變氧化錫通道層厚度,分別沉積6奈米、10奈米、15奈米的氧化錫通道層,其對應的載子遷移率分別為3.58 cm2V-1S-1、6.3 cm2V-1S-1、3.46 cm2V-1S-1,對應的開關電流比為1.58 x 103、9.55 x 10、6.21 x 10。由此現象我們可以了解到,通道層越厚通道層內的錫空缺就越多,導致電洞越多,且因為通道層厚度較厚,閘極控制能力下降,不足以排開電洞完全關閉元件。接著利用低溫氟電漿對氧化錫通道層進行改質,觀察氟電漿對氧化錫薄膜電晶體造成的影響。結果證實以氟電漿對通道層進行改質能夠改善氧化錫薄膜電晶體的漏電流。最後減薄氧化錫通道層厚度,並以退火溫度250oC、300oC、350oC進行通道層後退火,得到n型氧化錫薄膜電晶。本研究以通道層厚度6奈米為界線,當厚度大於6奈米之元件為p型氧化錫薄膜電晶體;當厚度小於6奈米之元件為n型氧化錫薄膜電晶體。

    This study first explored the effects of channel annealing temperature and the oxygen flow rate at the channel layer on the P-type SnO-TFT. Channel annealing at 150°C still exhibits metal properties, while annealing at 200°C shows favorable semiconductor characteristics for transistor rectification. In addition, the larger oxygen flow rate when depositing the tin oxide channel layer contributes to the growth of the tin oxide grains, the carrier mobility and the driving current of the devices can be improved, but also because the crystal grains increase the leakage current. It is important to choose the right oxygen flow. Followed by deposition of 6 nm, 10 nm, 15 nm tin oxide as the channel layer, the corresponding mobility of their devices were 3.58cm2V-1S-1, 6.3cm2V-1S-1, 3.46cm2V-1S-1, and the corresponding Ion/Ioff current ratio is 1.58 x 103, 9.55 x 10, 6.21 x 10. From this phenomenon we can understand that the channel layer thicker the channel layer of tin vacancy is more, resulting in more holes, and because the channel layer thickness is thick, the gate control capacity decreased, not enough to discharge the hole completely closed devices. Then, the effect of the tin oxide channel layer on the tin oxide thin film transistor was modified by the low temperature fluorine plasma. As a result, it was confirmed that the modification of the channel layer with the fluorine plasma could improve the leakage current of the tin oxide thin film transistor. Finally, the thickness of the tin oxide channel layer was reduced and the channel layer was annealed at an annealing temperature of 250oC, 300oC and 350oC to obtain an n-type SnO-TFTs. In this study, the tin oxide thin film transistor with the channel layer thickness of 6 nm as the boundary, when the thickness of more than 6 nm devices for the p-type SnO-TFTs; when the thickness of less than 6 nm devices for the n-type SnO-TFTs.

    目錄 誌謝 i 摘要 ii 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1前言 1 1.2薄膜電晶體簡介 2 1.3 研究動機及目的 3 第二章 文獻回顧 4 2.1 氧化錫材料特性 4 2.2 P型氧化物半導體傳導機制 6 2.3 P型氧化亞錫薄膜電晶體 7 2.4 二維氧化錫通道層場效電晶體 9 2.5 低溫電漿改質通道層 11 2.6 P型氧化物半導體薄膜電晶體 14 第三章 實驗方法與步驟 15 3.1 實驗流程 16 3.2 氧化錫薄膜電晶體製程步驟 17 3.3 低溫電漿通道改質處理 20 3.4 電性量測 21 第四章 結果與討論 23 4.1 比較不同製程條件對氧化錫薄膜電晶體之影響 23 4.1.1 在不同氧氣流量下沉積氧化錫通道層對元件之影響 23 4.1.2 比較通道層不同厚度對元件之影響 27 4.2 氟電漿表面改質對氧化錫薄膜電晶體之影響 28 4.3 通道層減薄對氧化錫薄膜電晶體之影響 35 第五章 結論與展望 41 5.1 結論 41 5.2 未來展望 42 參考文獻 43 圖目錄 圖1-1 MOSFET與TFT結構圖 2 圖2-1氧化錫結構圖(a) 氧化錫單位晶胞,(b) (100)方向側視圖,(c) c軸方向俯視圖 4 圖2-2 氧化物半導體能帶示意圖(a)典型氧化物半導體材料(b)具有高電洞遷移率氧化物半導體 6 圖2-3 P型氧化亞錫薄膜電晶體轉換特性圖 7 圖2-4 不同分壓下氧化亞錫薄膜電晶體轉換特性圖 8 圖2-5氧化錫場效電晶體 (a)通道層為5層氧化錫(2.5奈米) (b)通道層為12層氧化錫(6奈米) (c)通道層為20層氧化錫(10奈米)之轉換特性圖 10 圖2-6 氬電漿轟擊時間與通道層電性關係圖 11 圖2-7 氧電漿轟擊時間與通道層載子濃度關係圖 12 圖2-8 氧化鋅薄膜電晶體在不同氧電漿轟擊時間下之轉換特性圖 13 圖3-1 實驗流程圖 16 圖3-2 P型氧化亞錫薄膜電晶體(a)結構圖(b)元件上視圖 19 圖3-3高密度活性離子蝕刻系統 20 圖3-4 B1500A半導體分析儀 22 圖3-5低雜訊探針量測平台 22 圖4-1 氧化錫薄膜電晶體轉換特性圖 25 (a)5sccm轉換特性 (b)10sccm轉換特性 (c)15sccm轉換特性 圖4-2氧化錫薄膜電晶體輸出特性圖 26 (a)5sccm輸出特性 (b)10sccm輸出特性 (c)15sccm輸出特性 圖4-3 不同厚度氧化錫薄膜電晶體元件之轉換特性圖 27 圖4-4 氧化錫薄膜電晶體經氟電漿改質之轉換特性圖 30 (a)通道層厚度為60nm (b)通道層厚度為10nm (c)通道層厚度為15nm之元件轉換特性圖 圖4-5 氧化錫薄膜電晶體經氟電漿改質之輸出特性圖(a)通道層厚度為6nm 之元件輸出特性圖(b) 通道層厚度為10nm之元件輸出特性圖 (c) 通道層厚度為15nm之元件輸出特性圖 31 圖4-6 相對於氟電漿瓦數的 (a) 場效載子遷移率( FE )變化圖 (b)開電流變化圖 (c)關電流變化圖 (d)開關電流比變化圖 (e)次臨界擺幅變化圖……...34 圖4-7 薄化通道層氧化錫薄膜電晶體之轉換特性圖………………………..35 圖4-8氧化錫薄膜電晶體之轉換特性圖 (a) 通道層3奈米之轉換特性圖(b) 通道層4奈米之轉換特性圖(c) 通道層5奈米之轉換特性圖(d) 通道層6奈米之轉換特性圖 38 圖4-9 n型氧化錫薄膜電晶體特性圖 (a)Ion電流與通道層厚度關係圖 (b)Ioff電流與通道層厚度關係圖 (c) FE與通道層厚度關係圖 40 表目錄 表2-1氧化錫之相關物理性質表 5 表2-2氧化銦鎵鋅薄膜氬電漿處理前後之特性表 12 表2-3 P型氧化物半導體薄膜電晶體之特性表 14 表4-1不同沉積氧流量之元件特性 23

    [1] 施敏,伍國珏,半導體元件物理學,上冊,張鼎張,劉柏村,第三版,(程惠芳),國立交通大學出版社,新竹市,102年3月
    [2] P. K. Weimer, “The TFT a new thin-film transistor,” Proceeding of the IRE, 50, 1462-1469, (1962).
    [3] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 1269–1272, May 2003
    [4] H. H. Hsu, C. H. Cheng, P. Chiou, Y. C. Chiu, and Z.W. Zheng, “Amorphous Bilayer TiO2-InGaZnO Thin Film Transistors with Low Drive Voltage,” Solid-State Electronics, vol. 99, pp.51-54, 2014
    [5] K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, “Solution-processed oxide semiconductor SnO in p-channel thin-film transistors,” J. Mater.Chem., vol. 22, pp. 4607–4610, Jan. 2012
    [6] K. Saji, K. Tian, M. Snure, A. Tiwari, “2D Tin Monoxide-An Unexplored p-Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors”, Adv. Electron. Mater., 2, 4, (2016)
    [7] J. Pannetier, G. Denes, “Tin(II) oxide: structure refinement and thermal expansion”, B36, 2763, (1980)
    [8] G. W. Watson, J. Chem, “The orgin of the electron distribution in SnO”, Chemical Physics, 114, 758, (2001)
    [9] F. Izumi, “Pattern-fitting structure refinement of tin(II) oxide”, Solid State Chemistry, 38, 3, July(1981)
    [10] M. S. Moreno, R. C. Mercader, “Mossbauer study of SnO lattice dynamics”, Phys, B50, 9875, October(1994)
    [11] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., 24, 2945–2986, (2012)
    [12] Y. S. He, Joe C. Campbell, and Robert C. Murphy, “Electrical and optical characterization of Sb : SnO2,” Journal of Materials Research, 8, 3131-3134, (1993)
    [13] A. L. DAWAR, J. C. JOSHI, “Semiconducting transparent thin films: their properties and applications” Journal of Materials Science, 19, 1-23, (1984)
    [14] Y Shimizu, M Egashira, “Basic aspects and challenges of semiconductor gas sensors” MRS Bulletin, 24, 18-24, (1999)
    [15] D. B. Granato, J. A. Caraveo-Frescas, H. N. Alshareef, and U. Schwingenschlogl “Enhancement of p-type mobility in tin monoxide by native defects,” Appl. Phys. Lett., 102, 212105, (2013)
    [16] H. Li, X. Huang and L. Chen, “Direct Imaging of the Passivating Film and Microstructure of Nanometer‐Scale SnO Anodes in Lithium Rechargeable Batteries,” Electrochem. Solid-State Lett., 1, 241-243, (1998)
    [17] Wendy S. Baker, Jeremy J. Pietron, Margaret E. Teliska, Peter J. Bouwman, David E. Ramaker, and Karen E. Swider-Lyons, “enhanced Oxygen Reduction Activity in Acid by Tin-Oxide Supported Au Nanoparticle Catalysts,” J. Electrochem. Soc., 153,A1702-A1707, (2006)
    [18] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “p -channel thin-film transistor using p -type oxide semiconductor, SnO,” Appl. Phys. Lett., 93, 032113, (2008)
    [19] .H.N. Lee, H.J. Kim, C.K. Kim, “p-Channel Tin Monoxide Thin Film Transistor Fabricated by Vacuum Thermal Evaporation,” Japanese Journal of Applied Physics 49, 020202, (2010)
    [20] 陳柏維,“低溫電漿處理之多晶氧化錫通道結構於薄膜電晶體及光偵測器之研究”,國立臺灣師範大學,碩士論文,105年6月
    [21] W. C. Wu, C. S. Lai1, S. C. Lee, M. W. Ma, T. S. Chao, J. C. Wang, C. W. Hsu, Pai. Chi. Chou, J. H. Chen, K. H. Kao, W.C. Lo, Tsung. Y. Lu, L. L. Tay, and N. Rowe, “Fluorinated HfO2 Gate Dielectrics Engineering for CMOS by pre- and post-CF4 Plasma Passivation,” IEDM, 1-4, (2008)
    [22] Hisato Yabuta, Nobuyuki Kaji, Ryo Hayashi, Hideya Kumomi, Kenji Nomura, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Sputering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits”, Appl. Phys. Lett., 97 072111(2010)

    下載圖示
    QR CODE