Author: |
王建民 Wang, Chien-Ming |
---|---|
Thesis Title: |
以基因轉殖小鼠模式評估SCA17之神經治療藥物 Identification of Neurotherapeutics for SCA17 Using Transgenic Mouse Model |
Advisor: |
謝秀梅
Hsieh, Hsiu-Mei |
Degree: |
碩士 Master |
Department: |
生命科學系 Department of Life Science |
Thesis Publication Year: | 2015 |
Academic Year: | 103 |
Language: | 英文 |
Number of pages: | 79 |
Keywords (in Chinese): | 神經退化性疾病 、第十七型小腦脊隨萎縮症 、組織切片培養 、植物萃取物 、組蛋白去乙醯化酶抑制劑 、黃酮 |
Keywords (in English): | neurodegenerative disease, spinocerebellar ataxia type 17, organotypic slice culture, plant extract, HDAC inhibitor, flavone |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 161 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
第十七型小腦脊隨萎縮症 (SCA17)是一種體染色體顯性遺傳的神經退化性疾病,患者通常會有共濟失調、肌張力不全、震顫麻痺、癡呆或癲癇等症狀。此疾病的發生主要是由於TATA box 結合蛋白(TBP)基因上CAG/CAA 三核苷酸過度擴增所致,此過度擴增會轉譯出多麩醯胺酸(polyglutamine)使TBP形成難溶性的不正常蛋白堆積在細胞中,進而造成細胞毒性,而這些不正常的蛋白也會造成TBP失去其正常功能,最終導致神經退化及死亡。為了研究此疾病,我們實驗室建立了SCA17基因轉殖小鼠,希望透過此動物模式來評估對SCA17有潛力的治療方式。組織切片培養是一種半活體系統,有別於一般的細胞培養,其可有效的模擬一個器官或組織中不同細胞之間交互作用的情形。我們透過SCA17基因轉殖小鼠的小腦組織切片培養來篩選對於SCA17有治療潛力的藥物。在篩選了二十一種藥物之後,我們發現四個藥物可以降低切片培養中Purkinje cell內不正常TBP之聚集,其中包括兩種植物萃取物NTNU312及NTNU319、一種組蛋白去乙醯化酶抑制劑(HDACi) splitomicin和由師大化學系姚清發老師合成的化合物NC004-6,這四種藥物均各具特色。近年來越來越多植物萃取物都被證實具有神經保護的功能;再者SCA17因TBP之突變導致細胞內轉錄功能異常,HDACi可藉由抑制組蛋白去乙醯化酶的活性調節組蛋白乙醯化的程度進而增加DNA的轉錄效率;而NC004-6是以黃酮的結構為基礎修飾而成的化合物,黃酮已經被證實具有抗氧化、抗發炎等功效,而氧化壓力與發炎亦正是不正常蛋白堆積所造成之致病機制之一。在初步的小量動物行為實驗中我們發現NC004-6、NTNU312及NTNU319皆能稍微改善SCA17小鼠的運動協調能力,此外,在病理分析上我們也看到給予NC004-6的組別,其小鼠的小腦重量有明顯的增加,表示NC004-6可能具有保護小腦避免萎縮的功效;我們也發現在給予NTNU319的組別其pRSK的表現量有明顯的增加,pRSK是ERK訊息傳遞的下游,能夠促進細胞存活。因此我們選擇了NC004-6、NTNU312及NTNU319這三支藥物進入大量動物實驗。我們發現給予了NC004-6的組別,在滾輪實驗及步態分析中皆能有效的改善運動行為能力及步態協調性,而給予了NTNU312及NTNU319的組別也能有效的改善SCA17小鼠在步態分析中的行為缺失。因此我們認為這三支藥物可能是具有潛力的治療藥物。
Spinocerebellar ataxia 17 (SCA17) is an autosomal dominant and progressive neurodegenerative disease showing phenotypes with ataxia, dystonia, parkinsonism, dementia and seizures. SCA17 is caused by CAG/CAA excessive expansion in TATA box binding protein (TBP) gene, and the ploy-glutamine (polyQ)-expanded mutant TBP proteins form detergent-insoluble aggregates accumulate in Purkinje cells (PC) that may cause TBP lose its normal function and contribute to PC degeneration. To investigate the pathogenesis of SCA17, our lab has generated SCA17 mouse model and used it for potential therapeutic evaluation. Organotypic slice culture is a good semi-in vivo system because it can well mimic the interaction between different cell types within an organ. Through SCA17 mouse cerebellar slice culture system, we have screened 21 compounds/plant extracts and identified 4 potential ones that can reduce TBP aggregation, including two plant extracts, NTNU312 and NTNU319; one histone deacetylase inhibitor (HDACi), splitomicin; and one chemical compound, NC004-6, synthesized by Dr. Yao (Department of chemistry, NTNU). These 4 extracts/compounds have their own specific features. First of all, recent researches show plant extracts have benefits on neurodegenerative disease through neuron protective effect. In addition, transcription dysfunction caused by mutant TBP can be improved through HDACi regulating the acetylation of histones and increasing transcription efficiency. Moreover, inflammation and oxidation are two of the pathomechanism caused by mutant protein aggregation. NC004-6 was derived from the basis of flavone which is reported to have anti-inflammatory and antioxidative properties. In the pilot study, we found that NC004-6, NTNU312 and NTNU319 treatments could slightly improve motor coordination of SCA17 transgenic mice. Moreover, NC004-6 treatment protect cerebellum from atrophy while NTNU319 treatment upregulated pRSK expression level. pRSK is a downstream target of ERK pathway and promote cell survival. We therefore evaluate these three drugs in large scale test and found that NC004-6 could significantly rescue motor and coordination defects through both rotarod and footprint test, while NTNU312 and NTNU319 could also improve coordination deficiency in footprint test in SCA17 mice. We suggest these three drugs may be potential therapeutics for SCA17 disease.
Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nature reviews Neuroscience 6:297-311.
Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552-1555.
Bickler PE, Fahlman CS (2009) Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures. Anesthesiology 111:258-266.
Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of neuroscience research 78:157-166.
Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein and peptide letters 12:257-261.
Cendelin J, Voller J, Vozeh F (2010) Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behavioural brain research 210:8-15.
Chang KH, Chen WL, Wu YR, Lin TH, Wu YC, Chao CY, Lin JY, Lee LC, Chen YC, Lee-Chen GJ, Chen CM (2014) Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology 81:166-175.
Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. Journal of neurochemistry 118:288-303.
Chen J, Sidhu A (2005) The role of D1 dopamine receptors and phospho-ERK in mediating cytotoxicity. Commentary. Neurotoxicity research 7:179-181.
Colucci-D'Amato L, Perrone-Capano C, di Porzio U (2003) Chronic activation of ERK and neurodegenerative diseases. Bioessays 25:1085-1095.
Di Gregorio E et al. (2014) ELOVL5 mutations cause spinocerebellar ataxia 38. American journal of human genetics 95:209-217.
Di Prospero NA, Fischbeck KH (2005) Therapeutics development for triplet repeat expansion diseases. Nature reviews Genetics 6:756-765.
El Idrissi A, Boukarrou L, Heany W, Malliaros G, Sangdee C, Neuwirth L (2009) Effects of taurine on anxiety-like and locomotor behavior of mice. Advances in experimental medicine and biology 643:207-215.
Ferrari CC, Tarelli R (2011) Parkinson's disease and systemic inflammation. Parkinson's disease 2011:436813.
Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nature neuroscience 10:1519-1528.
Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain : a journal of neurology 124:1939-1947.
Gahwiler BH (1981a) Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum. Proc R Soc Lond B Biol Sci 211:287-290.
Gahwiler BH (1981b) Organotypic monolayer cultures of nervous tissue. Journal of neuroscience methods 4:329-342.
Gasiorowski K, Lamer-Zarawska E, Leszek J, Parvathaneni K, Yendluri BB, Blach-Olszewska Z, Aliev G (2011) Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration? CNS & neurological disorders drug targets 10:184-191.
Gill G, Tjian R (1992) Eukaryotic coactivators associated with the TATA box binding protein. Current opinion in genetics & development 2:236-242.
Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochemical pharmacology 88:584-593.
Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. American journal of human genetics 52:1182-1190.
Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A (2011) Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression. Journal of Alzheimer's disease : JAD 26:187-197.
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature reviews Genetics 10:32-42.
Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. Journal of neurotrauma 18:187-201.
Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324-332.
Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE (2009) Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. Journal of neuroinflammation 6:31.
Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America 100:2041-2046.
Jacobi H, Minnerop M, Klockgether T (2013) [The genetics of spinocerebellar ataxias]. Der Nervenarzt 84:137-142.
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912.
Khan MM, Zaheer S, Thangavel R, Patel M, Kempuraj D, Zaheer A (2015) Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism. Neurochemical research 40:980-990.
Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3:166-179.
Kirbas A, Kirbas S, Cure MC, Tufekci A (2014) Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic Parkinson's disease. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 21:451-455.
Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human molecular genetics 8:2047-2053.
Krassioukov AV, Ackery A, Schwartz G, Adamchik Y, Liu Y, Fehlings MG (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain research Brain research protocols 10:60-68.
Kumar KH, Khanum F (2013) Hydroalcoholic extract of cyperus rotundus ameliorates H2O2-induced human neuronal cell damage via its anti-oxidative and anti-apoptotic machinery. Cellular and molecular neurobiology 33:5-17.
Kuo Y, Ren S, Lao U, Edgar BA, Wang T (2013) Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 4:e833.
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787-795.
Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nature reviews Cancer 1:194-202.
Mazarakis NK, Mo C, Renoir T, van Dellen A, Deacon R, Blakemore C, Hannan AJ (2014) 'Super-Enrichment' Reveals Dose-Dependent Therapeutic Effects of Environmental Stimulation in a Transgenic Mouse Model of Huntington's Disease. J Huntingtons Dis 3:299-309.
McCampbell A, Fischbeck KH (2001) Polyglutamine and CBP: fatal attraction? Nature medicine 7:528-530.
Nagai Y, Popiel HA, Fujikake N, Toda T (2007) [Therapeutic strategies for the polyglutamine diseases]. Brain and nerve = Shinkei kenkyu no shinpo 59:393-404.
Nakajima A, Ohizumi Y, Yamada K (2014) Anti-dementia Activity of Nobiletin, a Citrus Flavonoid: A Review of Animal Studies. Clin Psychopharmacol Neurosci 12:75-82.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human molecular genetics 10:1441-1448.
Newell DW, Barth A, Malouf AT (1995) Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures. Brain research 675:38-44.
Okazawa H (2003) Polyglutamine diseases: a transcription disorder? Cellular and molecular life sciences : CMLS 60:1427-1439.
Orr HT, Zoghbi HY (2000) Reversing neurodegeneration: a promise unfolds. Cell 101:1-4.
Ostergaard K, Finsen B, Zimmer J (1995) Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 103:70-84.
Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012:756357.
Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T (2003) Mouse hippocampal organotypic tissue cultures exposed to in vitro "ischemia" show selective and delayed CA1 damage that is aggravated by glucose. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 23:23-33.
Santoro MG (2000) Heat shock factors and the control of the stress response. Biochemical pharmacology 59:55-63.
Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Molecular cell 15:95-105.
Schelhaas HJ, Ippel PF, Beemer FA, Hageman G (2000) Similarities and differences in the phenotype, genotype and pathogenesis of different spinocerebellar ataxias. European journal of neurology : the official journal of the European Federation of Neurological Societies 7:309-314.
Seipel K, Georgiev O, Gerber HP, Schaffner W (1994) Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Molecular reproduction and development 39:215-225.
Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolas H, Roig C, Corral J, Campos B, de Jorge L, Morcillo-Suarez C, Navarro A, Forlani S, Durr A, Kulisevsky J, Brice A, Sanchez I, Volpini V, Matilla-Duenas A (2013) New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA neurology 70:764-771.
St Laurent R, O'Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson's disease. Neuroscience 246:382-390.
Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. Journal of neuroscience methods 37:173-182.
Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S, Xu Y, Tsutusmi-Ishii Y, Miyake K, Miyake N, Kondo S, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell death and differentiation 14:1443-1456.
Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H (2004) SCA17 homozygote showing Huntington's disease-like phenotype. Annals of neurology 55:281-286.
Wade PA (2001) Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Human molecular genetics 10:693-698.
Walter S, Buchner J (2002) Molecular chaperones--cellular machines for protein folding. Angewandte Chemie 41:1098-1113.
Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245:192-194.
Zanwar MR, Raihan MJ, Gawande SD, Kavala V, Janreddy D, Kuo CW, Ambre R, Yao CF (2012) Alcohol mediated synthesis of 4-oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins. The Journal of organic chemistry 77:6495-6504.
Zeng KW, Ko H, Yang HO, Wang XM (2010) Icariin attenuates beta-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59:542-550.