研究生: |
曾名秀 |
---|---|
論文名稱: |
資深高中數學教師教學相關知識的個案研究 |
指導教授: | 金鈐 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 228 |
中文關鍵詞: | 教學用的數學知識 、基礎數學的深刻理解 、個案研究 、課堂觀察 |
英文關鍵詞: | Mathematical knowledge for teaching, Profound understanding of fundamental mathematics, Case study, Classroom observation |
論文種類: | 學術論文 |
相關次數: | 點閱:301 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用個案研究法與教室觀察法,描述一位資深高中數學教師「教學用的數學知識(mathematical knowledge for teaching,簡稱MKT)」內涵。依照個案教師所教授的高二數學課程,研究的單元包括幾何、離散與統計三個主題,區分為三個研究階段,為期一年。前導階段研究的教學單元為「空間中的直線與平面」,第一階段的教學單元為「重複組合」,第二階段則是「數學期望值」。個人利用教室觀察與訪談資料,並藉助Ball, Thames與Phelps (2008)的MKT架構,分析個案教師的數學教學相關知識及其樣貌。
研究結果顯示,個案教師MKT的六領域知識中有四項較為突顯,其餘二項則因文獻較少而難以區辨。在教學過程中,個案數學教師的MKT兼具外顯與內隱的特質,而且,隨著當下數學教學所需,各領域知識之間的轉換相當的快速,他為了因應教學的不確定性,展現出流動與彈性的特質。另外,各領域知識之間也會產生交互作用,特別是對學生理解的知識,時常影響其他領域的知識。此外,個案教師的數學教學信念以及課堂的情境脈絡,亦會影響各領域知識的呈現。最後,本研究個案教師的數學教學中,同時兼有「基礎數學的深刻理解(profound understanding of fundamental mathematics),簡稱PUFM」的部分特質。
本研究的結果,可以用來協助高中在職數學教師,進一步了解自己在教學中用到的各類數學教學知識的內涵以及影響的因素,以幫助教師做教學決策,進而引動數學教學專業的發展。此外,對數學師資培育者而言,了解資深高中數學教師教學時所呈現的各領域數學教學知識,可以用來幫助中學數學科實習學生,發展各領域的知識,以提升其教數學的功力。
This study uses case study and classroom observation to explore “mathematical knowledge for teaching (MKT)” of an experienced and purposeful selected senior high school mathematics teacher. This one year qualitative case study was divided into pilot, first and second stage, each explores the selected topics from geometry, discrete and statistics including 「plane and line in space」、「combination with repetition」 and 「mathematical expectation」 units. With the aid of Ball, Thames and Phelps’s (2008) MKT theoretical framework, the author used classroom observations and interview data to analyze participant teacher’s knowledge used in teaching those selected topics.
The results revealed that four domains of MKT of the teacher were highlighted, and the remaining two were not easy to distinguish. The MKT of the participant teacher had both explicit and implicit characteristics in presenting his knowledge. In the process of teaching, the four MKT domains transformed quietly and smoothly. Besides, the quick shifting showed the characteristics of mobility and flexibility in response to the uncertainties of classroom mathematics teaching. Few domains also interacted with each other. Especially, the knowledge of content and students often impacted others. The teacher's mathematics teaching belief and the context of the classroom also affected the use of the knowledge. Finally, the teacher's mathematics teaching showed some distinctive properties of “profound understanding of fundamental mathematics (PUFM)”.
The results of this research might help senior high school mathematics teachers to know and be aware of their MKT in order to make proper decisions, and facilitate their professional development of mathematical teaching. In addition, for mathematics teacher educators, understanding the knowledge in practice of the experienced senior high school mathematics teachers can help student teachers to develop MKT and enhance their pedagogical power.
一、中文部分
1. 林志成(2004)。教師會組織運作與學校文化。現代教育論壇,10,529-551。
2. 林清山(1992)。心理與教育統計學。台北:東華書局。
3. 范良火(2003)。教師教學知識發展研究。上海市:華東師範大學出版社。
4. 崔懷芝。量表信度的測量︰kappa統計量之簡介。查詢日期︰99年10月1日,檢自http://www2.cmu.edu.tw/~biostat/online/teaching_corner_011.pdf。
5. 張悅歆。教師專業化與特殊教育。查詢日期︰99年9月10日,檢自http://assist.batol.net/academic/academic-detail.asp?id=308。
6. 教育部(2003)。教師法。台北市:教育部。
7. 梁恆正(2004,5月)。師範校院面對組織變革的新思維。發表於九十三年度現代教育論壇─學校經營與管理研討會。屏東市:國立屏東師範學院。
8. 陳碧鳳(2005)。兩位國中數學教師幾何教學概念的個案研究。國立台灣師範大學碩士論文,台北市。
9. 黃政傑(1997)。課程改革的理念與實踐。台北:漢文。
10. 蔡宜芳(2007)。資訊科技融入國小六年級分數與小數常識教學之研究。國立嘉義大學數學教育研究所碩士論文。
11. 饒見維(1996)。教師專業發展-理論與實際。台北市:五南。
12. Bogdan, R. C.,&Biklen, S. K. (2001)。質性教育研究理論與方法(黃光雄主譯)。嘉義市︰濤石文化。(1998)
13. Irving S. (2009)。訪談研究法(李政賢譯)。台北市:五南。(2006)
14. Robert, K. Y. (2001)。個案研究法(尚榮安譯)。台北市︰弘智文化。(1994)
15. Strauss, A.,&Corbin, J. (2001)。紮根理論研究方法(吳芝儀、廖梅花譯)。嘉義市︰濤石文化。(1998)
二、英文部分
1. American Council on Education (ACE). (1999). To touch the future: Transforming the way teachers are taught. An action agenda for college and university presidents. Washington, DC: American Council on Education.
2. An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in china and the U.S. Journal of Mathematics Teacher Education, 7, 145-172.
3. Artzt, A., & Thomas, E. (1999). A cognitive model for examining teachers’ instructional practice in mathematics: A guide for facilitating teacher reflection. Educational Studies in Mathematics, 40, 211-235.
4. Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90(4), 449-466.
5. Ball, D. L. (2010). Knowing mathematics well enough to teach it: From teachers' knowledge to knowledge for teaching. Presented at the Institute for Social Research Colloquium, Ann Arbor, MI.
6. Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 83-104). London: Ablex Publishing.
7. Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical future. Paper presented on a keynote address at the 43rd Jahrestagung für Didaktik der Mathematik held in Oldenburg, Germany, March 1-4, 2009.
8. Ball, D. L., Charalambous, C.Y., Thames, M., & Lewis, J.M. (2009). Teacher knowledge and teaching: Viewing a complex relationship from three perspectives. In Tzekaki, M., Kaldrimidou, M., & Sakonidis, H. (Eds.), Proceedings of the 33rd Conference of the International Group for the psychology of Mathematics Education (PME 33), Vol. 1 (pp.121-125). Thessaloniki, Greece.
9. Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In Virginia, Richardson (Ed.), Handbook of Research on Teaching Edition (4th ed.) (pp. 433-456). Washington D.C.:AERA.
10. Ball, D. L., & Rowan, B. (2004). Introduction: Measuring instruction. The Elementary School Journal, 105(1), 3-10.
11. Ball, D. L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
12. Berliner, D. C. (1988). In pursuit of the expert pedagogue. Educational Researcher, 15(7), 5-13.
13. Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional knowledge. In R. Biehler, R. Scholz, R. Strasser ,& B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 73-88). Dordrecht: Kluwer Academic Publishers.
14. Cannon, T. (2008). Student teacher knowledge and its impact on task design. Unpublished master’s thesis. Brigham Young University, Provo, Utah.
15. Carroll & Mumme (2007). Developing mathematical knowledge for teaching. Retrieved October 20, 2009 from http://www.teachersdg.org/Assets/Carroll_ Mumme_TDG09.ppt
16. Charalambous, Y. C. (2008). Preservice teachers' mathematical knowledge for teaching and their performance in selected teaching practices: Exploring a complex relationship. Unpublished doctoral dissertation, State University of Michigan, East Lansing, MI.
17. Cooney, T. J., & Wilson, P.S., Albright, M., & Chaubot, J. (1998, April). Conceptualizing the professional development of secondary preservice mathematics teachers. Paper presented at the American Educational Research Association annual meeting, SanDiego, CA.
18. Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. Handbook of research on mathematics teaching and learning (pp. 147-164). New York:Macmillan.
19. Frick, T., &Semmel, M. I. (1978). Observer agreement and reliabilities of classroom observational measures. Review of Educational Research, 48(1), 157-184.
20. Hartmann, D. P. (1977). Consideration in the choice of interobserver reliability estimates. Journal of Applied Behavior Analysis, 10(1), 103-116.
21. Herriott, R. E., &Firestone, W. A. (1983). Multisite qualitative policy research: Optimizing description and generalizability. Educational Research, 12, 14-19.
22. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.
23. Learning Mathematics for Teaching (LMT) Project, Learning Mathematics for Teaching (LMT) Project. Retrieved October 20, 2009 from http://sitemaker.umich.edu/lmt/faq_about_video_codes
24. Leinhardt, G., & Smith, D. A. (1985). Expertise in mathematics instruction: Subject matter knowledge. Journal of Educational Psychology, 77(3), 247-271.
25. Ma, L. (1996). Profound understanding of fundamental mathematics: What is it ,why is it important, and how is it attained? Unpublished doctoral dissertation, Stanford University, Stanford.
26. Ma, L. (1999). Knowing and teaching elementary mathematics. New Jersey: Lawrence Erlbaum Associates.
27. McDiarmid, G. W., & Clevenger-Bright, M. (2008). Rethinking teacher capacity. Handbook of research on teacher education edition (3), pp.134-156.
28. McIntyre, D. I. (1980). Systematic observation of classroom activities. Educational Analysis, 2(2), 3-30.
29. National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author
30. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
31. Noddings, N. (1992). Professionalization and mathematics teaching. In D.A. Grovws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 197-208). New York: Macmillan.
32. Rosenshine, B., & Furst, N. (1973). The use of direct observation to study teaching. In R. M. W. Travers (Ed.), Second handbook of research on teaching (pp. 122-183). Chicago: Rand McNally.
33. Rowland, T., Huckstep, P. & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255-281.
34. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
35. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
36. Sleep, L. (2009). Teaching to the Mathematical Point: Knowing and Using Mathematics in Teaching. Unpublished doctoral dissertation, State University of Michigan, East Lansing, MI.
37. Thames, M. H. (2009). Coordinating mathematical and pedagogical perspectives in practice-based and discipline-grounded approaches to studying mathematical knowledge for teaching (K-8). Unpublished dissertation. University of Michigan, Ann Arbor.
38. United Nations Educational, Scientific and Cultural Organization (1966, October). Recommendation concerning the Status of Teachers. Adopted by the Special Intergovernmental Conference on the Status of Teachers, Paris, Paris.