簡易檢索 / 詳目顯示

研究生: 賴國棟
Lai, Guo-Dong
論文名稱: 英文詞彙測驗試題反應模型之建構與檢定
指導教授: 蔡蓉青
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 38
中文關鍵詞: 英文詞彙測驗Rasch模型二參數Logistic模型相依性有限訊息適配度檢定
英文關鍵詞: Vocabulary levels test, Rasch model, Two-parameter logistic model, dependency, limited-information goodness-of-fit test
DOI URL: https://doi.org/10.6345/NTNU202203736
論文種類: 學術論文
相關次數: 點閱:258下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在針對英文詞彙測驗考慮其題組架構,提出一套能夠解決其題目之間存在相依性問題的模型。目前常用於分析此測驗的模型為Rasch模型,但是在Rasch模型的假設之下,卻忽略了同題組題目因為使用共同選項而存在著相依性的問題,而本論文所提出的新模型,目標即在改善此問題。本文利用模擬研究比較新模型與IRT模型的估計,以確認估計方式的有效性、忽略題組間相依性所造成的結果以及確認M_3統計量用於檢測適配度之可行性;除此之外,我們也藉由AIC、BIC比較新模型與IRT模型在分析實徵資料上的優劣,並進一步利用M_3檢定新模型在分析實徵資料上適配度的表現。

  主要的研究結果有三個,第一、建構出新的模型;第二、以模擬實驗確認了參數估計的有效性與適配度檢定方式的可行性;第三、在實徵資料中呈現出新的二參數模型在估計與適配度上優於Rasch、2PL與單參數的新模型。

The Vocabulary Levels Test (VLT) is a tool to measure the learner’s word knowledge required for reading in English. Although Rasch model has been applied to analyze VLT, it is likely that ignorance of the dependency structure among items within a cluster in the matching format might cause bias on the estimation of item or person parameters. The purpose of this study is to propose a new model for VLT while taking into account the multiple matching format of the test. The maximum likelihood estimates of the parameters in the VLT-sequence model (VSM) are shown effectively obtained and the validity of a goodness-of-fit index based on limited information within each cluster of items is established for VSM. In the simulation studies, we investigate the effect of ignoring the dependency structure of items by comparing the estimation results from the proposed VSM models and from IRT models such as Rasch and the two-parameter logistic (2PL) models.
This study has achieved the three-fold purpose: (a) to build a VSM model, (b) to facilitate the estimation and goodness-of-fit indices of both the Rasch-VSM and 2PL-VSM, and (c) to illustrate the usefulness of VSM by showing the superior of 2PL-VSM over IRT models and Rasch-VSM in fitting the actual 3000-level VLT data.

致謝 i 中文摘要 ii Abstract iii 1 緒論 1 1.1 研究動機 1 1.2 研究目的 2 2 現行使用IRT模型 4 2.1 Rasch模型 4 2.2 2PL模型 4 3 VLT-sequence model(VSM) 5 3.1 模型假設 5 3.2 題組結構 5 3.3 估計 10 3.4 適配度檢定 12 4 模擬研究 14 4.1 生成資料 15 4.1.1 題目參數 15 4.1.2 樣本數 16 4.1.3 學生能力參數 16 4.2 模擬實驗結果分析 16 4.2.1 VSM資料以VSM分析之情況 16 4.2.2 VSM資料以IRT分析之誤差情況 17 4.2.3 M_3檢定適配度之可行性 26 5 實徵資料 27 5.1 資料來源 27 5.2 資料分析 28 5.2.1 模型比較 28 5.2.2 二參數VSM之參數估計與能力估計 28 5.2.3 模型適配 31 6 討論 34 7 結論 36 參考文獻 37

Abramowitz, M. and Stegun, I.A.(1972). Handbook of mathematical functions, 10th printing. Washington, DC:U.S. Government Printing Office.
Chen, L.J. and Tseng, W.T.(2012). An application of 3PL IRT model to validating a vocabulary levels test. Journal of Applied English, 5, 93-109.
DeMars, C.E.(2006). Application of the bi-factor multidimensional item response theory model to testlet-based tests. Journal of Educational Measurement Vol, 43(2), 145-168.
Huang, H.Y. and Wang, W.C.(2012). Higher order oestlet response models for hierarchical latent traits and testlet-based items. Educational and Psychological Measurement, 73(3), 491-511.
Kolmogorov, A.N.(1956). Foundations of the theory of probability, second english edition, Chelsea, NY:Chelsea publishing company.
Laufer, B. and Nation, P. (1999). A vocabulary-size test of controlled productive ability. Language testing, 16(1), 33-51.
Maydeu-Olivares, A.(2013). Goodness-of-fit assessment of item response theory models. Measurement, 11, 71-101.
Nation, I.S.P.(1983). Testing and teaching vocabulary. Guidelines, 5(1), 12-25.
Nation, I.S.P.(1990). Teaching and learning vocabulary. Boston, MA: Heinle and Heinle.
Rasch, G.(1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish Institute for Educational Research.
Schmitt, N. (2000). Vocabulary in language teaching. New York: Cambridge University Press..
Schmitt, N., Schmitt, D. and Clapham, C.(2001). Developing and exploring the behaviour of two new versions of the Vocabulary Levels Test. Language Testing, 18(1), 55-88.
Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The annals of mathematical statistics, 19(2)}, 279-281.
Xue, G. and Nation,I.S.P.(1984). A university word list. Language Learning and Communication, 3(2), 215-229.

下載圖示
QR CODE