簡易檢索 / 詳目顯示

研究生: 陳政翰
Chen, Jheng-Han
論文名稱: 設計思考模式結合STEM教學在高中生活科技機電整合單元之研究
Research of Integrating the Design Thinking Model and STEM Activity in Mechatronics Unit for Senior High School Living Technology Course
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 169
中文關鍵詞: 設計思考STEM教學機電整合
英文關鍵詞: Design thinking, STEM Activity, Mechatronics
DOI URL: https://doi.org/10.6345/NTNU202202103
論文種類: 學術論文
相關次數: 點閱:251下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機電整合單元包含電子、電機、資訊、機械、控制等工程領域內容,是一種跨學科課程,在領域與領域之間涵蓋著STEM(科學、科技、工程、數學)的相關知識。STEM知識的教學過程中應該要讓學習者有目的性的規劃,了解如何將知識應用於實作中,並讓學習者在設計過程中自我反省,以深化知識的應用,進而解決面臨的問題,透過做中學的策略整合理論與實務是學習機電整合內容中最好的一個步驟及方法。
    設計思考模式包含體驗、體會、概念發想、原型製作、測試評估,是一種以人為本的模式,希望設計者能夠體驗問題、了解問題並解決問題。除了概念的理解與應用、工具的使用,希望學習者未來在製作產品或是解決問題,不再只是為了製造而製造,而是以人為出發點生產出符合需求的產品。其中教學活動內容包含STEM知識、設計思考模式的教學、工具的使用,探討設計思考模式是否可以幫助學習者,學習機電整合實作課程時學習成效及實作表現的影響。
    研究貢獻包括產出適用於高中的設計思考模式融入STEM機電整合課程、STEM實作態度量表評量、實作評量工具用於教學環境中;教學實驗結果顯示透過設計思考模式的STEM機電整合課程之有助於提升學習成效、實作技能。

    Mechatronics includes the fields of electronics, electrical engineering, information, machinery, and control, which is a cross-curricular course. The related knowledge of STEM(Science, Technology, Engineering, Mathematics) is covered among the fields. The teaching process of the STEM knowledge should enable the learners to plan purposefully and to know how to apply the knowledge in the practical work. Besides, it should let the learners reflect on themselves to intensify the application of the knowledge and to further solve the problems they meet. The best procedure and the method in the process of learning the science lies in the learning-by-doing strategy integration theory and practice.
    The study combines the design thinking mode and STEM in the Mechatronics unit of living technology in senior high school. Design Thinking (Empathize, Define, Ideate, Prototype, Test) is a mode that centers on human, hoping that the designer can experience the problem, understand the problem and solve the problem. Besides the understanding and the application of the concept and the use of the tool, we hope that when the learners make their products or solve the problems in the future, they will not just produce for no other reason than producing. Rather, they will take humans as the starting point to produce the product that meets the needs. The contents of the teaching activity include STEM knowledge, the teaching of the design thinking mode and the use of the tools. We aim to investigate that if the design thinking mode is able to help the students in the learning achievement and the handson ability of the practical course of Mechatronics.
    The contribution of the research includes producing the high school STEM Mechatronics course that integrates with the design thinking mode, the evaluation table of STEM practical attitude and the adoption of the evaluation tool of the practical work on the teaching environment. The result of the teaching experiment shows that the STEM course that applies design thinking mode is helpful to improve the learning achievement and the handson ability.

    謝 誌 III 中文摘要 IV ABSTRACT VI 圖 次 XI 表 次 XIV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 6 第三節 待答問題 7 第四節 研究範圍與限制 8 第五節 研究流程 10 第六節 名詞釋義 12 第二章 文獻探討 15 第一節 設計思考概述 15 第二節 STEM概述 22 第三節 實作表現 25 第三節 機電整合 30 第四節 學習行為分析 34 第五節 文獻評析 40 第三章 研究方法與步驟 42 第一節 研究架構 42 第二節 研究對象 43 第三節 實驗設計與實施 45 第四節 研究工具 49 第四章 研究結果與討論 58 第一節 教學活動設計 58 第二節 不同教學策略對於機電整合課程學習成效之影響 83 第三節 不同教學策略對於STEM實作學習態度的影響 89 第四節 不同教學策略對於實作表現的影響 94 第五節 不同教學策略對於學習行為分析結果 111 第五章 結論與建議 116 第一節 結論 116 第二節 建議 119 參考文獻 123 一、中文部分 123 二、英文部分 128 附錄一 實驗組機電整合課程教學教案 138 附錄二 對照組機電整合課程教學教案 149 附錄三 STEM實作學習態度量表 158 附錄四 機電整合學習成效測驗卷 160 附錄五 自動感應燈學習單 163 附錄六 自走車設計 165 附錄七 智慧家庭生活期末作業學習單 167 附錄八 期末作業海報模板 169

    王千倖(2003)。以 [網路同儕教學] 建構 [網路學習社群] 之行動研究。師大學報:科學教育類,48(1),119-141。
    王鼎銘(1999)。科技發展與科技教育學習經驗. 生活科技教育, 32(4), 6-14。
    石文傑、江宗霖(2012)。數位學習課程之製作與教學策略之應用—以 [機電整合與控制] 為例。 International Journal of Advanced Information Technologies (IJAIT), 6,2
    行政院(2014)。行政院生產力4.0發展方案核定版。行政院經濟部。
    余安順(2015)。融合動手做與競賽策略在不同課程順序下之鎖具構造建立研究。科技與工程教育學刊, 47(1)。
    吳文雄(2002)。電腦技能學習者過去的績效、目標認同、電腦自我效能及電腦績效因果關係之驗證-社會認知理論與目標設定理論的整合。師大學報:科學教育類, 47(1),39-54。
    吳木崑(2009)。杜威經驗哲學對課程與教學之啟示。臺北市立教育大學學報:教育類, 40(1),35-54。
    吳幼吾(1985)。違反迴歸斜率同質性之假定對共變數分析強靭度之影響。教育學刊,6,321-337。
    吳莉君(譯)(2010)。設計思考改造世界(原作者:Brown, T)。台北:聯經出版事業股份有限公司。(原著出版年:2009)。
    吳婷婷、張磊、黃悅民(2016)。工程教育中創造力與認知歷程向度之探索。工程與科技教育學術研討會論文集,213-222。
    吳靜吉(2003)。創造力的評量:4P觀點。2016年8月10日,取自http://www.creativity.edu.tw/modules/wfsection/download.php?fileid=436。
    呂金燮(1999)。實作評量-理論。台北:五南。
    李佩育、周汎澔、林麗娟、張靜鳳(2013)。問題導向學習策略於 [兒童虐待與疏忽] 教育訓練課程活動成效之探討。高雄護理雜誌,30(3),9-22。
    李振發、李浩榕、林穀欽與吳向宸(2012)。機電整合應用與實習。新北市:文京。
    李隆盛、吳正己、游光昭、周麗瑞、葉家棟、盧秋珍與沈章平(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。國家教育研究院(編號NAER-102-06-A-1-02-09-1-18)。
    李賢哲、陳皇州、陳存仁、林曉雯、李文仁、許華書與賴岦俊(2016)。動手做科學教育中心之設計與實踐。科學教育月刊,391,40-51。
    李賢哲、樊琳、李文慶(2006)。九年一貫課程培養學生動手做能力課程規劃之探討─ 以手擲滑翔機為例。課程與教學, 9(1), 81-98。
    汪泰宏、王緯璿、康晉愷、劉家豪(2016)。使用 Arduino 發展平臺監控魚菜共生系統。管理資訊計算,5(2),1-10。
    汪殿杰、巫鍵志、王意蘭與吳致娟(2014)。強調動手實作的科技教育-以臺北市立大同高中為例。中等教育, 65(4), 141-151。
    周立強、程安邦、林玠明(2004)。創思設計與製作在機電整合課程的教學啟發~以第六屆機器人競賽為例。宜蘭大學學報,2,159-176。
    周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育,41(7), 51-83。
    林芃蕙(2016)。自造者運動 重視實作價值。2017年06月30日,取自http://castnet.nctu.edu.tw/castnet/article/9897。
    林坤誼、游光昭、洪國峰(2011)。操作技能對思考與實作表現影響之研究。課程與教學,14(4),161-185。
    林倍伊、林顯達、李佩蓉、詹雯靜、洪國財、洪煌堯(2016)。在不同模式的電腦支援協作學習環境下,師培生理解教學理論層次之差異-以 Blackboard 和 Knowledge Forum 為例。資訊社會研究, 31, 71-108。
    林偉文(2011)。創意教學與創造力的培育-以 [設計思考] 為例。教育資料與研究雙月刊,100,53-57。
    范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊, 61(2), 153-183。
    范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55,71-102。
    孫春在、林珊如(2007)。網路合作學習:數位時代的互動學習環境. 教學與評量。台北市:心理出版社。
    徐怡詩、王國華(2005)。國中自然與生活科技教師試行實作評量之行動研究。科學教育。14,21-35。
    張森富、林明河、洪濬成(2009)。資訊與機電整合技術之發展與策略。生物產業科技管理叢刊, 1(1),119-137。
    教育部(2002)。創造力教育白皮書。台北:教育部。
    教育部(2014)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-科技領域。行政院教育部。
    曹永忠、許智誠、蔡英德(2013)。 Arduino 電風扇設計與製作: The Design and Development of an Electronic Fan by Arduino Technology。彰化縣:渥瑪數位有限公司。
    莊啟宗,曹永忠,蔡英德(2007,10月)。運引導式資訊融入教學模式學習成效之研究。第2006健康與管理學術研討會,新竹。
    陳立庭(2017)。科技教育的真實評量–以篩選裝置為例。科技與人力教育季刊,3(3),20-39。
    陳立庭、林奕維、陳政翰、許庭嘉(2016,5月)。不同自律學習學生在Facebook與Moodle平台之討論行為分析。第二十屆全球華人計算機教育應用大會(GCCCE 2016),香港。
    陳昭宇(2016)。探究遊戲在體育教學的價值:經驗學習理論的應用。中華體育季刊,30(2),97-104。
    陳清溪(2013)。我國人才培育政策之探討。教育資料與研究,112,1-24。
    彭易璟(2016)。運用發現式學習,協同學習提升學生敘寫能力-轉化技法與 [物] 的情意表達。高醫通識教育學報,11,1-30。
    游光昭、林坤誼、周家卉(2016)。英美日科技教科書分析及其對十二年國教之啟示。 Journal of Textbook Research,9(1),135-166。
    游光昭、林坤誼、洪國峰(2010)。從反思與實踐看國中生在科技實作活動中的學習歷程表現。課程與教學,13(3),219-250。
    黃子榕、林坤誼(2014)。 職前教師於 STEM 實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
    葉俊巖、羅希哲(2015)。以 Maker 的角度來看臺灣小學的資訊教育。 臺灣教育評論月刊,4(12),110-114。
    葉建宏(2017)。我國專業技術人才培育之困境與展望。臺灣教育評論月刊,6(3),110-112。
    趙偉順、張玉山(2011)。經驗學習理論在生活科技課程的教學應用-以 [扭轉乾坤] 曲柄玩具單元為例。生活科技教育,44(6),1-21。
    樊祖燁(2015)。技職院校推動同儕師徒制之探析。致理學報, 35, 259-290。
    蔡廷科(2014)。學校裡的創客空間-以國立內壢高中特色課程為例。 中等教育,65(4),129-140。
    鄭蕙如、林世華(2004)。Bloom 認知領域教育目標分類修訂版理論與實務之探討─ 以九年一貫課程數學領域分段能力指標為例.。NTTU Educational Research Journal,15(2),247-274。
    簡茂發(2001)。多元化評量之理念與方法。現代教育論壇:落實國小自然科多元教學與評量。國立教育資料館、台北市立師院科教所。
    羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究。人文社會科學研究,3(3), 42-66。
    Agassi, J. (1997). Thought, action and scientific technology. International Journal of Technology and Design Education, 7(1-2), 33-48. doi: 10.1023/a:1008828130869.
    Alciatore, David G. Introduction to mechatronics and measurement systems. Tata McGraw-Hill Education, 2007.
    Arabacioglu, T., & Akar-Vural, R. (2014). Using Facebook as a LMS?. Turkish Online Journal of Educational Technology-TOJET, 13(2), 202-214.
    Bakeman, R. (1986). Observing interaction:An introduction to sequential analysis. Cambridge ;New York: Cambridge University Press.
    Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.
    Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44(9), 1175.
    Banzi, M. (2011). Primeiros passos com o Arduino. São Paulo: Novatec, p1.
    Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: The open source electronics prototyping platform. Maker Media, Inc.
    Berry III, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., & Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64(4), 23-30.
    Besemer, S. P., & O’ Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an american sample. Creativity Research Journal, 12, 287–296.
    Blackwell, D., & Henkin, L. (1989). Mathematics:Report of the project 2061 phase I mathematics panel. Washington, DC: American Association for the Advancement of Science, Inc.
    Bollen, K. A., & Long, J. S. (1992). Tests for structural equation models:Introduction. Sociological Methods & Research, 21(2), 123-131.
    Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parker, A. D. (2015). The relationships among high school STEM learning experiences and students' intent to declare and declaration of a STEM major in college. Teachers College Record, 117(3).
    Brown, T., & Wyatt, J. (2010). Design thinking for social innovation IDEO. Development Outreach, 12(1), 29-31.
    Bruner, J. S. (1976). The process of education. Harvard University Press.
    Carlgren, L., Rauth, I., & Elmquist, M. (2016). Framing design thinking: The concept in idea and enactment. Creativity and Innovation Management, 25(1), 38-57.
    Carroll, M. P. (2014). Shoot for the moon! the mentors and the middle schoolers explore the intersection of design thinking and STEM. Journal of Pre-College Engineering Education Research, 4(1).
    Chang, H. (2016). Autoethnography as method (Vol. 1). Routledge.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, NJ:Lawrence Erlbaum Associates Inc.
    Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997-1003.
    Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The effects of a STEM intervention on elementary students' science knowledge and skills. School Science and Mathematics, 113(5), 215-226.
    Cropley, D. H. (2016). Creativity in engineering. In Multidisciplinary Contributions to the Science of Creative Thinking (pp. 155-173).
    Daugherty, M. & Wicklein, R. (1993). Mathematics, science, and technology teacher's perceptions of technology education. Journal of Technology Education, 4(2), 28-43.
    Daugherty, M. , (2001). Problem solving in appropriate technology. In R. C. Wicklein (Ed.), Appropriate technology for sustainable living: ITEA 50th yearbook (pp. 170-201). Reston, VA: International Technology Education Association.
    Dewey, J. (1997). Democracy and education. New York: Simon & Schuster.
    Dunne, D., & Martin. R. (2006). Design thinking and how it will change management education:An interview and discussion. Academy of Management Learning & Education, 5,512–523. doi:10.5465/AMLE.2006.23473212
    Evans, D. L., McNeill, B. W., & Beakley, G. C. (1990). Design in engineering education:Past views of future directions. Journal of Engineering Education, 79, 517–522.
    Gottlieb, M., Wagner, E., Wagner, A., & Chan, T. (2017). Applying design thinking principles to curricular development in medical education. AEM Education and Training, 1(1), 21-26.
    Grimheden, M., & Hanson, M. (2005). Mechatronics—the evolution of an academic discipline in engineering education. Mechatronics, 15(2), 179-192.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5, No. 3, pp. 207-219). Upper Saddle River, NJ: Prentice hall.
    Haury, D. L , & Rillero, P (1994).Perspectives of hands-on science teaching. Columbus, OH: The ERICClearinghouse for Science,Mathematics, and Environmental Education.
    Hillman, D. C., Willis, D. J., & Gunawardena, C. N. (1994). Learner- interface interaction in distance education: An extension of contemporary models and strategies for practitioners. The American Journal of Distance Education, 8(2), 30-42.
    Holmberg, B. (1983). Guided didactic conversation in distance education. InD. Sewart, D. Keegan, & B. Holmberg (Eds). Distance Education, International Perspectives (pp.114-122). New York: Routledge, Chapman & Hall.
    Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation modeling: A Multidisciplinary Journal, 6(1), 1-55.
    Huq, A., Huq, A., Gilbert, D., & Gilbert, D. (2017). All the world’s a stage: transforming entrepreneurship education through design thinking. Education. Training, 59(2), 155-170.
    Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). The NMC Horizon Report: 2015 museum edition. new media consortium. 6101 West Courtyard Drive Building One Suite 100, Austin, TX 78730.
    Johnson, R. T., & Johnson, D. W. (1986). Cooperative learning in the science classroom. Science and Children, 24, 31-32.
    Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
    Kolb, B. (1984). Functions of the frontal cortex of the rat: A comparative review. Brain Research Reviews, 8(1), 65-98.
    Lantz, Jr., H. B. (2009). Science, technology, engineering, and mathematics (STEM) education what form? What function? July 5, 2016 Retrieved from http://www.currtechintegrations.com/pdf/ STEMEducationArticle.pdf
    Lee, S.-J. (2007). Exploring pupils’ understanding concerning batteries – theories and practices. International Journal of Science Education, 29(4), 497-516.
    Leonard, S. N., Fitzgerald, R. N., & Riordan, G. (2016). Using developmental evaluation as a design thinking tool for curriculum innovation in professional higher education. Higher Education Research & Development, 35(2), 309-321.
    Levinson, R., Murphy, P., & McCormigk, R. (1997). Science and technology concepts in a design and technology project:A pilot study. Research in Science & Technological Education, 15(2), 235-255. doi: 10.1080/0263514970150208
    Lou, S. J., Shih, R. C., Diez, C. R., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes:An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21(2), 195-215.
    Lu, Y. L., Lian, I. B., & Lien, C. J. (2015). The application of the analytic hierarchy process for evaluating creative products in science class and its modification for educational evaluation. International Journal of Science & Mathematics Education, 13.
    Madani, R., Moroz, A., Baines, E., & Makled, B. (2016). Realising a child's imagination through a child-led product design for both two-dimensional and three-dimensional product. International Journal of Materials and Product Technology, 52(1-2), 96-117.
    Martin-Kniep, G., Feige, D., & Soodak, L. (1995). Curriculum integration: An expanded view of an abused idea. Journal of Curriculum and Supervision, 10(3), 227-249.
    Meek, S., Field, S., & Devasia, S. (2003). Mechatronics education in the Department of Mechanical Engineering at the University of Utah. Mechatronics, 13(1), 1-11.
    Mentzer, N., Becker, K., & Sutton, M. (2015). Engineering design thinking: High school students' performance and knowledge. Journal of Engineering Education, 104(4), 417-432.
    Mitchell, C. T. (1996). New thinking in design: Conversations on theory and practice. Van Nostrand Reinhold Company.
    Mooney,R.L.(1963). A conceptual model for integrating four approaches to the identification of creative talent. In C.W.Taylor & Barron(Eds) Scientific creativity: Its recognition and development(p331-340p). N.Y. : Wiley and Sons.
    Moore, M. G. (1989). Three types of interaction. The American Journal of Distance Education, 3(2),1-6.
    Ohnishi, K., Shibata, M., & Murakami, T. (1996). Motion control for advanced mechatronics. IEEE/ASME transactions on mechatronics,1(1), 56-67.
    Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079.
    Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies. doi: 10.1016/j.destud.2017.06.001
    Petrina, S. (2007). Advanced teaching methods for the technology classroom. Hershey, PA: Information Science Publishing.
    Piaget, J. (1977). The development of thought: Equilibration of cognitive structures.(Trans A. Rosin). Viking.
    Pinelli, T., & Haynie III, W. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
    Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important?. Review of Educational Research, 82(3), 330-348.
    Rees, P., Olson, C., Schweik, C. M., & Brewer, S. D. (2016). Work in Progress: Exploring the Role of Makerspaces and Flipped Learning in a Town-Gown Effort to Engage K12 Students in STEAM. Conference & Exposition, 26-1751.
    Rhodes,M.(1961). An analysis of creativity. Phi Delta Kappan, 42, 305-310.
    Rotherham, A. J., & Willingham, D. (2009). To work, the 21st century skills movement will require keen attention to curriculum, teacher quality, and assessment. Educational Leadership, 9, 15–20.
    Rowe, P. G. (1991). Design thinking. MIT press.
    Sackett, G. P. (1974). A nonparametric lag sequential analysis for studying dependency among responses in observational scoring systems. Unpublished manuscript.
    Sanders, M. (2009). STEM, STEM Education, STEMmania: A Series of circumstances has once more created an opportunity for technology educators to develop and implement new integrative approaches to STEM education championed by STEM Education reform doctrine over the past two decades. The Technology Teacher, 68(4), 20-26.
    Shute, V. J., & Becker, B. J. (2010). Innovative assessment for the 21st century. New York, NY: Springer-Verlag.
    Shute, V. J., & Torres, R. (2012). Where streams converge: Using evidence-centered design to assess Quest to Learn. In M. Mayrath, J. Clarke-Midura, & D. H. Robinson (Eds.), Technology-based assessments for 21st century skills: Theoretical and practical implications from modern research (pp. 91–124). Charlotte, NC: Information Age Publishing.
    Simsek, A., & Hooper, S. (1992). The effects of cooperative versus individual videodisc learning on student performance and attitudes. International Journal of Instructional Media, 19(3), 209-18.
    Taheri, M., Unterholzer, T., Hölzle, K., & Meinel, C. (2016, March). An educational perspective on design thinking learning outcomes. In ISPIM Innovation Symposium (p. 1). The International Society for Professional Innovation Management (ISPIM).
    TED x Taipei(2012)。Tim Brown:設計與思考,改變世界的力量。2016年7月20日,取自http://tedxtaipei.com/articles/tim-brown-urges-designers-to-think-big/。
    The New York State Systemic Initiative (NYSSI). (1997). Mathematics, Science and Technology Resource Guide. July 5, 2016 retrieved available on http://www.emsc.nysed.gov/guides/mst/
    Ting, Y. K., & Wu, Y. J. (2017). The Strategies of Using Collegial Principal Leadership to Promote the Development of Teachers' Professional Learning Community. Jiaoyu Yanjiu Yuekan= Journal of Education Research, 278, 28.
    Tough, A. (2002). The iceberg of informal adult learning. New Approaches to Lifelong Learning (NALL). 49-2002.
    Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science,technology, engineering and mathematics (STEM) in a project-based learning. International Journal of Technology and Design Education, 23(1), 87-102.
    Webb, N. M., Troper, J., & Fall, J. R. (1995). Constructive activity and learning in collaborative small groups. Journal of Educational Psychology, 87(1), 406-423.
    Wright, G. (2015). Promoting sTEm in grades 2 – 8 by engaging students in hands-on engineering and technology activities that leverage fundament science and mathematics concepts. In D. Slykhuis & G. Marks (Eds.), Proceedings .of Society for Information Technology & Teacher Education International Conference 2015 (pp. 2049-2053). Chesapeake, VA: Association for the Advancement of Computing in Education .
    Zheng, C., Le Duigou, J., Bricogne, M., & Eynard, B. (2016). Multidisciplinary interface model for design of mechatronic systems. Computers in Industry, 76, 24-37.

    下載圖示
    QR CODE