簡易檢索 / 詳目顯示

研究生: 張聖章
論文名稱: 電化學暨機械剝離之複合方式製備高品質石墨烯片
Preparation of high-quality graphene sheets under electrochemical/mechanical hybrid exfoliation
指導教授: 鄧敦平
Teng, Tun-Ping
楊啟榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 123
中文關鍵詞: 石墨烯電化學剝離機械剝離
英文關鍵詞: Graphene, Electrochemisrty exfoliation, Mechanical exfoliation
論文種類: 學術論文
相關次數: 點閱:62下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在液相中以複合電化學暨機械剝離之方法,快速剝離出大量之寡層石墨烯,過濾後在氬/氫(90/10)氣氛控制下進行800℃持續2小時的熱處理,獲得高品質的石墨烯片粉末。實驗首先天然石墨粉在離子溶液中進行循環式正極或負極的電化學插層,利用離子與氣體的插層形成膨脹石墨,接著利用高速均質機的旋轉刀頭,進行循環迴旋式之機械攪動給予膨脹石墨剪切力,打斷石墨層間之凡德瓦鍵結造成脫層剝離。當然,在進行機械剝離時,亦可同時進行電化學剝離,讓兩種剝離機制複合作用,以達到快速、高品質石墨烯片製備之目的。預期藉由離子溶液濃度、正負極作用、插層電壓、插層轉速、剝離轉速、剝離電壓及時間等參數控制,可達到高產率、高品質石墨烯片生產之目的。實驗結果顯示,在插層轉速2000 rpm、插層電壓4 V、插層時間1小時、剝離轉速10000 rpm、剝離時間1小時之最佳條件下,所剝離石墨烯片的平均厚度為2.2 nm、平均大小為1~1.5 μm2,藉由波長521 nm之綠光雷射進行拉曼光譜量測,顯示其2D-band和G-band之強度比值為0.93 (I2D/IG = 0.93)、半高寬的值為67.53 (FWHM= 67.53),故判斷此法所製備之石墨烯片為寡層石墨烯。此外,藉由重量評估結果證明此法寡層石墨烯片的產率高達20 %,為純電化學剝離產率的兩倍以上。本研究也將所剝離之石墨烯片轉移至300 nm SiO2/Si的基板上,透過光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及原子力顯微鏡(AFM)等儀器,評估石墨烯片的大小、表面形貌、厚度均勻性及晶格品質。本研究已證實複合電化學暨機械剝離的方法,所製備之石墨烯片具有快速、低成本、高品質、單位產量高及不氧化的優勢,適合發展成產業量產技術,而高品質的寡層石墨烯片將適用於導電漿料、透明導電層或超級電容的開發。

    In this study, using the liquid phase electrochemical/mechanical hybrid process for exfoliating a lot of few-layer graphene, after heating to 800 ℃ for two hours under argon/hydrogen (90/10) atmosphere controlled, producing high quality graphene sheet powder. First, natural graphite powder for the experimental circulation of the positive electrode or the negative electrode in an electrochemical intercalation ion solution, the use of intercalation ions and gas to form an expanded graphite, and then homogenized using a high speed clarifixator, a rotary-type cyclic mechanical agitation to generate shear force for expanded graphite, interrupted the van der Waals bonding between the graphite layers caused graphene delamination peel. Of course, during the mechanical exfoliation, simultaneously electrochemical exfoliated can be conducted, both of two mechanisms , in order to achieve fast, high-quality preparation of graphene sheets. Expected by the ion concentration in the solution, the positive and negative intercalation effects, intercalation voltage, intercalation speed, exfoliation parameters such as speed control, voltage and time can be achieved in high throughput, high quality graphene sheets purpose of production. The experimental results showed that the optimum conditions for the exfoliation time of 1 hour under the intercalation speed 2000 rpm, intercalation voltage 4 V, 1 hour intercalation speed of 10000 rpm, the average thickness of the graphene sheet is 2.2 nm the average size of 1 ~ 1.5 μm2, by the wavelength of 521 nm green laser Raman spectroscopy measurements show its 2D-band and G-band of the intensity ratio of 0.93 (I2D / IG = 0.93), half-height width is 67.53 (FWHM = 67.53), so the judgment of graphene sheets prepared by this method is few-layer graphene. Further, by evaluation of the weight of the throughput for this method is proved few-layer of graphene sheets reach to 20 wt.%, the throughput more than pure electrochemical method at least 2 times. This study also be exfoliation the graphene sheet transferred to the 300 nm SiO2 / Si substrate through an optical microscope (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and other equipment, to evaluated the size of the graphene sheet, the surface morphology, thickness uniformity and quality of the crystal lattice. This study has confirmed that electrochemical/mechanical hybrid method, graphene sheets prepared for rapid, low cost, high quality, high yields and no oxidation of advantages for development into industrial mass production technology, and high-quality few-layer graphene of the conductive layer applied to the transparent conductive layer eventhough in the development of a super capacitor.

    中文摘要 I 英文摘要 II 總目錄 III 表目錄 V 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 奈米科技 4 1.2.1 奈米科技市場與產望 5 1.3 碳材料介紹 6 1.3.1石墨 6 1.3.2奈米碳管 7 1.3.3石墨烯 7 1.4超級電容 10 1.5研究動機與目的 12 第二章 文獻回顧與理論探討 13 2.1 石墨烯的製備 13 2.1.1 微機械剝離法 13 2.1.2 氧化石墨快速加熱法 17 2.1.3 碳化矽表面磊晶法 20 2.1.4 化學氣相沉積法 23 2.1.5 化學剝離法 26 2.1.6氧化石墨化學剝離法 29 2.1.7電化學剝離法 32 2.2超級電容 43 第三章 實驗設計與規劃 44 3.1 實驗規劃 44 3.2 實驗設備與檢測 50 3.2.1電化學暨機械剝離之實驗與量測設備 50 3.2.2超級電容性能檢測與量測設備 54 第四章 實驗結果與討論 59 4.1 插層液體效果之比較 59 4.2插層轉速效果之比較 67 4.3 插層電壓效果之比較 75 4.3.1陽極插層效果之比較 75 4.3.2陰極插層效果之比較 83 4.4剝離轉速效果之比較 91 4.5剝離電壓效果之比較 99 4.6 溶液pH值及溫度變化之比較 103 4.7添加劑效果之比較 105 第五章 結論與未來展望 116 5.1 結論 116 5.2 未來展望 118 參考文獻 119

    1. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, A. K. Geim, F. Schedin and D. Jiang, “Unconventional quantum Hall effect and Berry’s phase of 2 in bilayer graphene”, Nature physics, 2, pp. 177 -180 (2006).
    2. Qing-feng Sun and X C Xie, “Quantum transport through a graphene nanoribbon–superconductor junction”, Journal of pysics, 21, pp. 344204 (2009).
    3. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva and A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 22, pp. 1178- 1271 (2004).
    4. Virendra Singh Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker and Sudipta Seal, “Graphene based materials: Past, present and future”, Science, 56, pp. 1178- 1271 (2011).
    5. http:// www.sumken.comtweventDetail.doparameter=OH10012013
    6. httpwww.nature.comnaturejournalv490n7419fullnature11458.html
    7. 林學恆, “奈米市場全球發燒”, 經濟日報, 8 月7 日 (2003).
    8. 成章瑜, “新科學創造台灣競爭力”, 遠見雜誌, 11 月號, pp. 81- 84
    9. Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, ”Superior Thermal Conductivity of Single-Layer Graphene”, Nano letters, 8, pp. 902- 907 (2008)
    10. Wei Lv Dai-Ming Tang, Yan-Bing He, Cong-Hui You, Zhi-Qiang Shi, Xue-Cheng Chen, Cheng-Meng Chen, Peng-Xiang Hou, Chang Liu, and Quan-Hong Yang, “Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage”, Ascnano, 3, pp. 3730- 3736 (2009).
    11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,1 M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers” Physical review letters, 97, pp. 187401 (2006).
    12. 謝雅萍, “目睹原子-利用光來發掘石墨烯(Graphene)”物理雙月刊, (2011).
    13. A. Ouerghi M. Ridene, C. Mathieu, N. Gogneau and R. Belkhou, “From nanographene to monolayer graphene on 6H-SiC(0001) substrate”, Applied physics letters, 102, pp. 253108 (2013).
    14. http://www.lostinscience.wordpress.com20120303graphene-a-nobel-prize-experiment-in-your-own-home

    15. P. Blakea, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied physics letters, 91, pp. 063124 (2007).
    16. McAllister, Je-Luen Li, Douglas H. Adamson, Hannes C. Schniepp, Ahmed A. Abdala, Jun Liu, Margarita Herrera-Alonso, David L. Milius, Roberto Car, Robert K. Prud’homme, and Ilhan A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite”, American chemical society, 19, pp. 4396-4404 (2007).
    17. C. Virojanadara, M. Syväjarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov and T. Balasubramanian, “Homogeneous large-area graphene layer growth on 6H-SiC(0001)” Physical review, 78, pp. 245403 (2008).
    18. Rositza Yakimova and Mikael Syväjärvi, “Quality comparison: epitaxial graphene vs graphene by CVD”, Concept graphene,D 1.2, (2011).
    19. http:// neel.cnrs.frspip.phprubrique49&lang=fr
    20. Ke Xiao, Huaqiang Wu, Hongming Lv, Xiaoming Wu and He Qian, “The study of the effects of cooling conditions on high quality graphene growth by the APCVD method” Nanoscale, 5, pp. 5524–5529 (2013).
    21. Alfonso Reina, “Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” Nano letters, 9, pp. 30-35 (2009).
    22. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo and Rodney S. Ruoff, ”Synthesis of High-Quality and Uniform Graphene Films on Copper Foils Large-Area”, Science, 324, pp. 1312 (2009).
    23. Peiwei Gong, Zhaofeng Wang, Jinqing Wang, Honggang Wang,a Zhangpeng Li, Zengjie Fan, Ye Xu, Xiuxun Han and Shengrong Yang, “One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage” Materials Chemistry, 22, pp. 16950 (2012).
    24. Ching-Yuan Su Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, and Lain-Jong Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation”, American chemical society, 3, pp. 2332– 2339 (2011)
    25. http://neel.cnrs.frspip.phprubrique49&lang=fr
    26. Ke Xiao, Huaqiang Wu, Hongming Lv, Xiaoming Wu and He Qian, “The study of the effects of cooling conditions on high quality graphene growth by the APCVD method” Nanoscale, 5, pp. 5524 (2013)
    27. Vladimir Bulovic, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo and Rodney S. Ruoff, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” Nano letters, 9,pp. 30-35 (2009).
    28. Peiwei Gong, Zhaofeng Wang, Jinqing Wang, Honggang Wang,a Zhangpeng Li, Zengjie Fan, Ye Xu, Xiuxun Han and Shengrong Yang, “One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage” Materials chemistry, 2012, 22, pp. 16950 (2012).
    29. Liangming Wei, Fei Wu, Diwen Shi, Changchen Hu, Xiaolin Li, Weien Yuan, Jian Wang, Jiang Zhao, Huijuan Geng, Hao Wei, Ying Wang, Nantao Hu and Yafei Zhang, “Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene” Scientific report, 3, pp. 2636 (2008)
    30. Peter Blake , Paul D. Brimicombe, Rahul R. Nair, Tim J. Booth, Da Jiang, Fred Schedin, Leonid A. Ponomarenko, Sergey V. Morozov, Helen F. Gleeson, Ernie W. Hill, Andre K. Geim, and Kostya S. Novoselov, “Graphene-Based Liquid Crystal Device”, Nano letters, 3, pp. 1704-1708 (2008)

    31. Sukanta De Paul J. King, Mustafa Lotya, Arlene O’Neill, Evelyn M. Doherty, Yenny Hernandez, Georg S. Duesberg, and Jonathan N. Coleman, “Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions” Small, 6, pp. 458– 464 (2010).
    32. Sanjib Biswas and Lawrence T. Drzal, “A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface” Nano letters, 9, pp. 167-172 (2009).
    33. Wentian Gu, Wei Zhang, Xinming Li, Hongwei Zhu, Jinquan Wei, Zhen Li, Qinke Shu, Chen Wang, Kunlin Wang, Wanci Shen, Feiyu Kang and Dehai Wu, “Graphene sheets from worm-like exfoliated graphite”, Materials chemistry, 19, pp. 3367–3369 (2009).
    34. Xiuyi Lin, Jingjing Jia, Nariman Yousefi, Xi Shen and Jang-Kyo Kim, “Highly Transparent Conducting Graphene Films Produced by Langmuir Blodgett Assembly as Flexible Electrodes” Electronic materials and packaging, 978-1-4673-4944-4 (2012).
    35. Jong Hak Lee, Dong Wook Shin, Victor G. Makotchenko, Albert S. Nazarov, Vladimir E. Fedorov, Yu Hee Kim, Jae-Young Choi, Jong, Min Kim, and Ji-Beom Yoo, “One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets”, Advanced materials, 21, pp. 4383–4387 (2009).
    36. Cristina Valle´s, Carlos Drummond, Hassan Saadaoui, Clascidia A. Furtado, Maoshuai He, Olivier Roubeau, Luca Ortolani, Marc Monthioux, and Alain Pe´nicaud “Solutions of Negatively Charged Graphene Sheets and Ribbons” American chemical society, 130, pp. 15802–15804 (2008).
    37. Jiong Lu, Jia-xiang Yang, Junzhong Wang, Ailian Lim, Shuai Wang, and Kian Ping Loh, “One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids” American chemical society, 3, pp. 2367–2375 (2009).
    38. Chia-Feng Changa, Quang Duc Truongb and Jiann-Ruey Chena, “Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification” Applied surface science, pp. 24403 (2012).
    39. Sha Jin, Lin-sheng Xie, Yu-lu Ma, Jing-jie Han, Zhang Xia, Guo-xun Zhang, Shu-mei Dong and Yan-yun Wang, “Low-temperature expanded graphite for preparation of graphene sheets by liquid-phase method” Physics, 188, (2009).
    40. François Varchon, Pierre Mallet, Laurence Magaud, and Jean-Yves Veuillen, “Few layers graphene on 6H-SiC(000-1): an STM study” Physics,77,pp. 165415 (2008).
    41. Benjamin Kraus, Timm Lohmann, Dong-Hun Chae, Miroslav Haluska, Klaus von Klitzing and Jurgen H. Smet, ” Laser-induced disassembly of a graphene single crystal into a nano-crystalline network” D-70569 Stuttgart, Germany (2010).
    42. A. Gupta, Gugang Chena, P. Joshi b, S. Tadigadapa b and P.C. Eklund, “Raman Scattering from High Frequency Phonons in Supported n-Graphene Layer Films” The pennsylvania state university, 16802 USA (2011).
    43. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene” Nano letters, 7, pp. 238-242 (2007).

    下載圖示
    QR CODE