Basic Search / Detailed Display

Author: 朱其翊
Thesis Title: 含錳超氧化物岐化酶之N3O2五牙配位基擬態化合物的合成、性質及超氧化物反應性探討
Advisor: 李位仁
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2013
Academic Year: 101
Language: 中文
Number of pages: 77
Keywords (in Chinese): 超氧化物歧化酶還原電位
Keywords (in English): superoxide dismutase, reductive potential
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 114Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 為了模擬含錳過氧化物歧化酶(MnSOD),本研究沿用之前本實驗所合成C2對稱的N3O2五牙配位基(H2BDPP),經去質子化後與MnCl2反應可得五配位二價錳錯合物Mn(BDPP) (1),錯合物1經氧化後可得穩定的三價錳錯合物Mn(BDPP)(OH) (2)、Mn(BDPP)(Cl) (3)及[Mn(BDPP)(H2O)](BF4) (4),並利用紫外/可見光光譜、X光繞射結構解析以及循環伏安法,進行鑑定及探討。相對於Ag/Ag+參考電極,超氧離子歧化反應的還原電位應介於−0.24與+0.96伏特之間,使超氧離子的單電子氧化還原最好位於此範圍的中間值,錯合物1及4的還原電位分別為+0.125及−0.3伏特,有機會與KO2進行反應。當錯合物1與KO2於−80 ˚C下反應時,在UV/vis可見光譜上可以觀察到370, 447及720 nm處有特徵吸收峰,與過去文獻中MnIII-OOH中間態化合物的吸收光譜相似,就MnSOD的催化循環而言,MnIII-OOH確實參與反應機制當中。另一方面,錯合物4與KO2於室溫下反應,其紫外/可見光光譜與錯合物2相近,我們推測其反應過程為KO2將錯合物4去質子化後形成錯合物2。

    In order to mimic the active site of MnSOD, a C2-symmetric N3O2 pentadentate ligand, H2BDPP prepared previously by our lab, was deprotonated and employed to react with MnCl2 to give a five-coordinate Mn(BDPP) (1). Complex 1 can be oxidized to form stable MnIII complexes, Mn(BDPP)(OH) (2), Mn(BDPP)(Cl) (3) and [Mn(BDPP) (H2O)](BF4) (4), which are characterized by UV/vis spectroscopy, X-ray crystallography and cyclic voltammetry. The reductive potential for dismutasing superoxide anion should be between −0.24 and +0.96 V (vs. Ag/Ag+), and preferentially near the middle of this range for one-electron oxidation and reduction of superoxide. The reductive potential of complexes 1 and 4 were +0.125 and −0.3 V, respectively. They have the potential to react with KO2. When complex 1 reacted with KO2 at −80 ˚C, three electronic absorptions (λmax = 370, 447, 720 nm) were observed. The UV/vis spectrum of the reaction mixture is similar to that of MnIII-OOH intermediate. According to the proposed MnSOD catalytic cycle, MnIII-OOH intermediate is certainly involved in the catalytic cycle. On the other hand, when complex 4 reacted with KO2 at room temperature, a UV/vis spectrum similar to that of complex 2 was obtained. We proposed that complex 4 was deprotonated by KO2 to form complex 2.

    目 錄 中文摘要………………………………………………………………...Ι 英文摘要...................................................................................................II 圖索引………………………………………………………………….III 表索引…………………………………………………………………..V 附錄索引………………………………………………………………..VI 第一章 緒論 前言…………………………………………..….………………….1 第一節 研究動機與目的……………………..….………………….3 第二節 含金屬超氧化物歧化酶的相關文獻探討…………………6 第三節 含錳超氧化物歧化酶擬態化合物的相關文獻探討……..15 第二章 實驗部分 第一節 實驗儀器、藥品及條件……………………………………24 第二節 配位基的合成與鑑定……………..………………………31 第三節 錯合物的合成與鑑定……………………………………..38 第四節 二價錳錯合物1與超氧化鉀之反應……………………..44 第五節 三價錳錯合物4與超氧化鉀之反應………………. .…...44 第三章 結果與討論 第一節 含錳超氧化物歧化酶(MnSOD)結構模擬之錳金屬錯合物探討…………………………………………………...…..45 第二節 模擬MnSOD之錳擬態錯合物電化學探討…………….59 第三節 模擬MnSOD之錳擬態錯合物與超氧化物的反應性及機制之探討……………………………………………………………………….67 第四章 結論與展望………...…………………………………….…....74 參考文獻…………………………………………………………….….76 附錄

    1. Lee, J.; Grabowsk, J. Chem. Rev. 1992, 92, 1611–1647.
    2. Halliwell, B.; Whiteman, W. British Journal of Pharmacology 2004, 142, 231–255.
    3. McCord, J.; Fridovich, I. Free Radical Biology and Medicine 1988, 5, 363–369.
    4. Riley, D. P. Chem. Rev. 1999, 99, 2573–2587.
    5. Pelmenschikov, V.; Siegbahn, P. E. M. Inorg. Chem. 1999, 38, 940–950.
    6. Strothkamp, K. G.; Lippard, S. J. Acc. Chem. Res. 1982, 15, 318–326
    7. Li, J.; Fisher, C. L.; Konecny, R.; Bashford, D.; Noodleman, L. Inorg. Chem. 1999, 38, 929–939.
    8. Qunit, P. S.; Domsic, J. F.; Cabelli, D. E.; Mckenna, R.; Silverman, D. N. Biochemistry 2008, 47, 4621–4628.
    9. Srnec, M.; Aquilante, F.; Ryde, U.; Rulisek, L. J. Phys. Chem. B 2009, 113, 6074–6086.
    10. Miller, A-F. Acc. Chem. Res. 2008, 41, 501–510.
    11. Grove, L. E.; Xie, J.; Yikilmaz, E.; Karapetyan, A.; Miller, A.; Brunold, T. C. Inorg. Chem. 2008, 47, 3993–4004.
    12. Jackson, T. A.; Brunold, T. C. Acc. Chem. Res. 2004, 37, 461–470.
    13. Broering, E. P.; Troung, P. T.; Gale, E. M.; Harrop, T. C. Biochemistry 2013, 52, 4−18.
    14. Long, L. M.; Shearer, J. Inorg. Chem. 2006, 45, 2358−2360.
    15. Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A.; Getzoff, E. D. Biochemistry 2004, 43, 8038–8047.
    16. Sheng, H.; Enghild, J. J.; Bowler, R.; Patel, M.; Calvi, C. L.; Day, B. J.; Pearlstein, R.D.; Crapo, J. D.; Warner, D. S. Free Radical Biology & Medicine 2002, 33, 947–961.
    17. Wang, Z. Q.; Riley, D. P. British Journal of Pharmacology 2003, 140, 445–460.
    18. Noritake, Y.; Umezawa, N.; Kato, N.; Higuchi, T. Inorg. Chem. 2013, 52, 3653−3662.
    19. Lee, W. Z.; Chiang, C. W. Chem. Eur. J. 2012, 18, 50–53.
    20. Ghosh, K.; Tyagi, N.; Kumar, P.; Singh, U. P.; Goel, N. Journal of Inorganic Biochemistry 2010, 104, 9–18.
    21. Walton, P. H.; Smith, J. L.; Hider, R. C.; Khodr, H. H.; Lewis, A. A. Dalton Trans. 2004, 187–188.
    22. Solomon, E. I.; Holm, R. H.; Kennephol, P. Chem. Rev. 1996, 96, 2239-2314.
    23. Jackson, T. A.; Karapetian, A.; Miller, A-F.; Brounold, T. C. Biochemistry 2005, 44, 1504–1520.

    下載圖示
    QR CODE