簡易檢索 / 詳目顯示

研究生: 賴信志
論文名稱: 多項式環上的多項式之因式函數和
On The Sums of Polynomial Divisor Functions
指導教授: 許志農
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 22
中文關鍵詞: 多項式環因式函數
英文關鍵詞: polynomial ring, divisor function
論文種類: 學術論文
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們主要在研究在q個元素的有限體Fq上絕對不可分多項式F(T,x)的monic因式個數和的平均數。令p是Fq的特徵。假設F(T,x)=f(x)是一個x為變數,Fq[T]為係數的r(1<=r<p)次多項式。在一般的情況,我們得到:
存在兩個常數c_1和c_2(和q,r和max{deg a_i}有關)使得
c_1Nq^N<= sump_{deg a=N} au(f(a))<= c_2Nq^N,
其中 au(f(a))代表f(a)的monic因式個數,而這裏的sump是跑所有的monic多項式。在二次的情況,我們令q是奇數,那麼我們就得到:
sump_{deg a=N} au(a_2a^2+a_1a+a_0)=CNq^N+O(q^N),
其中大O的常數與q和max{deg a_i}有關,而常數C我們可以完全把它寫出來。

We study the average number of monic polynomial divisors of an absolutely irreducible polynomial F(T,x) over the finite field Fq with q elements. Let p be the characteristic of F_q.
Suppose F(T,x)=f(x) is of degree r (1<= r<p) in x over F_q[T].
We show that, in general case, there exist two positive constants c_1 and c_2 (depending on q, r and max{deg a_i}) such that
c_1Nq^N<= sump_{deg a=N} au(f(a))<= c_2Nq^N,
where au(f(a)) denotes the number of monic polynomial divisors of f(a) and the sum runs through all monic polynomials in F_q[T]. In quadratic case, if q is odd, then we have
sump_{deg a=N} au(a_2a^2+a_1a+a_0)=CNq^N+O(q^N),
where the implied constant depends on q and max{deg a_i} and the constant C can be determined explicitly.

Abstract........................................1 1.Introduction..................................1 2.Auxiliary Lemmas..............................3 3.Polynomial Divisor Sums: General Case........16 4.Polynomial Divisor Sums: Quadratic Case......20 Refrerences....................................22

L. Carlitz,
The Arithmetic of Polynomials in a Galois Field,
it American Journal of Mathematics, 54 (1932), 39--50.
P. Erd"os,
The sum sum d{f(k)},
J. London Math. Soc. 27 (1952), 7--15.
W. Fulton,
Algebraic Curves,
W.A. Benjamin, Inc. (1969).
Chih-Nung Hsu,
Estimate for Coefficients of L-functions for Function Fields,
Finite Fields and Their Applications, 5 (1999), 76--88.
Chih-Nung Hsu,
On Polynomial Waring-Goldbach Problem, preprint.
Chih-Nung Hsu,
The Distribution of Irreducible Polynomials in F_q[t],
J. of Number Theory 61 (1996), 85--96.
J. Hoffstein and M. Rosen,
Average Values of L-series in Function Fields,
J. reine angew. Math. 426 (1992), 117--150.
C. Moreno,
Algebraic curves over finite fields,
Cambridge University Press (1991).
J. Mckee,
On The Average Number of Divisors of Quadratic Polynomials,
Math. Proc. Camb. Phil. Soc. 117 (1995), 389--392.
K. D. Merrill and L. H. Walling,
On Quadratic Reciprocity Over Function Fields,
Pacific Journal of Mathematics, Vol. 173, No. 1, (1996), 147--150.
T. Nagell,
Introduction to Number Theory,
John Wiley $&$ Sons (1951).
L. Rudolf and N. Harald,
Finite Fields,
Encyclopedia of Mathematics and Its Applications, Vol. 20 (1997).
E. J. Scourfield,
The Divisors of A Quadratic Polynomial,
Proc. Glasgow Math. Soc. 5 (1961), 8--20.
W. M. Schmidt,
Equations over Finite Fields,
Lecture Notes in Math., Vol. 536 (1976).

無法下載圖示
QR CODE