簡易檢索 / 詳目顯示

研究生: 劉人瑛
Liu, Jen-Ying
論文名稱: 3D列印容槽鑲嵌毛筆尖電噴灑/質譜法的開發與研究
Development and application of a 3D-printed kit for loading a spray-brush in electrospray ionization/mass spectrometry
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 毛筆尖電噴灑質譜法3D列印技術
英文關鍵詞: Writing brush-spray/MS, 3D printer technology
DOI URL: https://doi.org/10.6345/NTNU202204581
論文種類: 學術論文
相關次數: 點閱:103下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於電噴灑質譜法,首度開發一個新型的採樣/電噴灑裝置。類似於紙片電噴灑質譜法的原理,分析物揮發後經過尼龍毛筆尖而離子化。將尼龍毛筆尖鑲嵌在3D列印容槽中,容槽內的甲醇可以持續提供溶劑使毛筆可以像毛細管一樣穩定的進行電噴灑。本實驗也選用不同材質的毛進行比較,探討不同材質對電噴灑效果的影響,而實驗結果顯示尼龍毛具有最好的離子化效率,故最後選用尼龍毛做為本研究裝置的毛筆材質。這是因為尼龍毛的表面較為平滑,樣品可以順著毛快速的噴灑並且離子化。本裝置中的3D列印容槽是利用市售的3D列印機印製而成,而印製材料選用ABS樹脂,為丙烯腈-丁二烯-苯乙烯的共聚物。其總重量約為1克,總長約為3.5公分。本裝置為可拋棄式並且可提供多種功能,包含非侵入性的採樣、簡單的萃取以及離子化樣品。以農藥大滅松(C5H12NO3PS2)為測試樣品,其最低偵測極限為0.1 µg/mL。同質譜條件下,相較於傳統濾紙電噴灑可得到更低的偵測極限。模擬真實樣品採樣可測至1 µg/ml,可快速且準確的偵測樣品以達快篩的目的。

    A novel type of a sampling/ionization kit was successfully developed for use in electrospray ionization/mass spectrometry, for the first time. Based on the similar theory with paper-spray mass spectrometry, the analytes were evaporated and then ionized through the surface of a small nylon writing-brush. A part of the nylon writing-brush was embedded inside a 3D-printed plastic cell, in which methanol was provided for rinsing the brush by means of capillary action. Although various brushes were examined, we finally selected nylon fiber in this study. This is because the surface nylon fiber is smooth, and then the sample molecules can be transferred and sprayed faster. The body of the kit was produced by a commercial 3D-printer, in which ABS (acrylonitrile butadiene styrene) was used for the making material. The size and weight of the kit were 1 gram and 4 cm, respectively. This disposable kit provides various functions, including non-invasive sampling, simple-extraction and ionization. On the other hand, various types of pesticides were selected as the test samples. To a dimethoate (C5H12NO3PS2), the limit of detection was found to 0.1 µg/mL. By using the same mass spectrometer, the results were better than that of a traditional paper-spray mass spectrometry, using a triangular chromatography paper.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1. 研究目的 1 1-2. 研究背景 2 1-3. 分析物介紹 5 1-4. 高分子聚合物介紹 7 第二章 分析方法與原理 8 2-1. 液相層析電噴灑串聯式質譜儀(LC/ESI-MS) 8 2-1-1. 電噴灑游離質譜法發展演進史 9 2-1-2. 電噴灑離子化原理及離子形成機制 15 2-1-3. 離子阱質量分析器簡介 20 2-2. 3D印表機列印技術原理 22 第三章 儀器、藥品與實驗方法 29 3-1. 拋棄式毛筆尖電噴灑裝置製作 29 3-2. 3D繪圖設計 31 3-3. 毛筆尖電噴灑游離質譜法(brush-spray/ESI-MS) 34 3-4. 儀器及周邊設備列表 37 3-5. 藥品列表 39 3-6. 菜葉真實樣品前處理以及採樣方法 40 3-7. 3D容槽鑲嵌纖維液-液微萃取法 42 第四章 結果與討論 45 4-1. 毛筆尖電噴灑條件最佳化 45 4-2. 毛筆尖電噴灑對於農藥的偵測極限 53 4-3. 模擬真實樣品採樣 55 4-4. 3D容槽鑲嵌纖維在液-液微萃取的應用 57 第五章 結論 59 參考文獻 61 研究發表 67

    參考文獻

    [1]. G. IJ. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem. 86 (2014) 11657-11665.
    [2]. A. O. Nier, Rev. Sci. Instrum. 18 (1947) 415.
    [3]. M. S. B. Munson, J. Am. Chem. Soc. 88 (1966) 2621
    [4]. M. Karas, F. Hillenkamp,
    [5]. Z. Takats, J. M. Wiseman, B. Gologan, R. G. Cooks, Science 306 (2004) 471. Anal. Chem. 60 (1988) 2299.
    [6]. A. Venter, P. E. Sojka, R. G. Cooks, Anal. Chem. 78 (2006) 8549.
    [7]. A. B. Costa, R. G. Cooks, Chem. Phys. Lett. 464 (2008) 1-8.
    [8]. J. M. Wiseman, D. R. Ifa, A. Venter, R. G. Cooks, Nat. Protocol. 3 (2008) 517-524.
    [9]. D. R. Ifa, N. E. Manicke, A. L. Dill, R. G. Cooks, Science 321 (2008) 805.
    [10]. Z. Takats, J. M. Wiseman, R. G. Cooks, J. Mass Spectrom. 40 (2005) 1261-1275.
    [11]. R. G. Cooks, Z. Ouyang, Z. Takats, J. M. Wiseman, Science. 311 (2006) 5767.
    [12]. E. C. Horning, D. I. Carroll, I. Dzidic, K. D. Haegele, G. Horning, R. N. Stillwell, J. Chromatogr. 12 (1974) 725.
    [13]. D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, E. C. Horning, Anal. Chem. 47 (1975) 2369.

    [14]. Z. Takats, J. M. Wiseman, B. Gologan, R. G. Cooks, Science. 306 (2004) 471-473.
    [15]. R. M. Alberici, R. C. Simas, G. B. Sanvido, W. Romao, P. M. Lalli, M. Benassi, I. B. Cunha, M. N. Eberlin, Anal. Bioanal. Chem. 398 (2010) 265-294.
    [16]. M. Z. Huang, S. C. Cheng, Y. T. Cho, J. Shiea, Anal. Chem. Acta. 702 (2011) 1-15.
    [17]. C. M. Hong, C. T. Lee, Y. M. Lee, C. P. Kuo, C. H. Yuan, J. Shiea, Rapid Commum. Mass Spectrom. 13 (1999) 21.
    [18]. J. Jehn, C. H. Lin, J. Shiea, Anal. Chem. 77 (2005) 8170.
    [19]. J. Shiea, M. Z. Huang, H. J. Hsu, C. Y. Lee, C. H. Yuan, I. Beech, J. Sunner, Rapid Commum. Mass Spectrom. 19 (2005) 3701.
    [20]. M. Z. Hua ng, H. J. Hsu, C. I. Wu, S. Y. Lin, Y. L. Ma, J. Shiea, J. Am. Soc. Mass Spectrom. 21 (2006) 1767.
    [21]. H. Wang, J. J. Liu, R. G. Cooks, Z. Ouyang, Angew. Chem. 49 (2010) 877.
    [22]. J. J. Liu, H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463.
    [23]. W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, J. Assoc. Lab. Auto 15 (2010) 433.
    [24]. S. Jain, A. Heiser, A. R. Venter, Analyst 136 (2011) 1298.
    [25]. H. Wang, N. E. Manicke, Q. A. Yang, L. X. Zheng, R. Y. Shi, R. G. Cooks, O. Y. Zheng, Anal. Chem. 83 (2011) 1197.
    [26]. Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2011) 931.
    [27]. A. Y. Li, H. Wang, Z. Ouyang, R. G. Cooks, Chem. Commun. 47 (2011) 2811.
    [28]. N. E. Manicke, Q. A. Yang, H. Wang, S. Oradu, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 300 (2011) 123.
    [29]. N. E. Manicke, P. Abu-Rabie, N. Spooner, Z. Ouyang, R. G. Cooks, J. Am. Soc. Mass. Spectrom. 22 (2011) 1501.
    [30]. R. D. Espy, N. E. Manicke, Z. Ouyang, R. G. Cooks, Analyst 137 (2012) 2344.
    [31]. Q. Yang, H. Wang, J. D. Mass, W. J. Chappell, N. E. Manicke, R. G. Cooks, Z. Ouyang, Int. J. Mass Spectrum. 312 (2012) 201.
    [32]. R. D. Espy, A. R. Muliadi, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 167 (2012) 325.
    [33]. Q. Yang, N. E. Manicke, H. Wang, C. Petucci, R. G. Cooks, Z. Ouyang, Anal. Bioanal. Chem. 404 (2012) 1389.
    [34]. Z. Zhang, R. G. Cooks, Z. Ouyang, Analyst 137 (2012) 2556.
    [35]. S. A. Oradu, R. G. Cooks, Anal. Chem. 84 (2012) 10576.
    [36]. Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012) 31.
    [37]. W. C. Liao, H. K. Chen, T. Y. Kuo, C. H. Lin, Bioanalysis. 6 (2014) 1-10.
    [38]. P. H. Lai, P. C. Chen, Y. W. Liao, J. T. Liu, C. H. Lin, Int. J. Mass Spectrom. 375 (2015) 14-17.
    [39]. H. Lee, C. S. Jhang, J. T. Liu, C. H. Lin, J. Sep. Sci. 0 (2012) 1-4.
    [40]. H. K. Chen, C. H. Lin, J. T. Liu, C. H. Lin, Int. J. Mass Spectrom. 356 (2013) 37-40.
    [41]. B. Hu, P. K. So, Z. P. Yao, J. Am. Soc. Mass Spectrum 65 (2013) 2457.
    [42]. D. Hess, C. Bruecker, F. Hegner, A. Balmert, H. Bleckmann, Plos One 8 (2013).
    [43]. V. L. Tal’roze, G. V. Karpov, I. G. Gordetskii, V. E. Skurat, J. Phys. Chem. 42 (1968) 1658
    [44]. M. Barber, R. S. Bordoli, G. J. Ellott, R. D. Sedgwick, A. N. Tyler, Anal. Chem. 54 (1982) 645A.
    [45]. R. J. Cotter, Anal. Chem. 60 (1988) 781A.
    [46]. E. Unsold, F. Hillenkamp, R. Nitsche, Analysis. 4 (1990) 115.
    [47]. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Science 246 (1989) 64-71.
    [48]. J. Zeleny, Phys. Rev. 10 (1917) 1.
    [49]. M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice, J. Chem. Phys. 49 (1968) 2240.
    [50]. L. L. Mack, P. Kralic, A. Rheude, M. Dole, J. Chem. Phys. 52 (1970) 4977.
    [51]. M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4451.
    [52]. M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4671.
    [53]. S. F. Wong, P. Kralic, J. B. Fenn, J. phys. Chem. 92 (1988) 546.
    [54]. N. B.Cech, C. G. Enke, Mass Spectrom. Rev. 20 (2001) 362.
    [55]. J. A. Loo, C. G. Edmonds, H. R. Udseth, R. D. Smith, Anal. Chem. 62 (1990) 693.
    [56]. R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga, H. R. Udseth, Anal. Chem. 62 (1990) 882. [57]. M. L. Aleksandrov, L. N. Gall, V. A. Shkurov, V. A. Pavlenko, N. V. Krasnov, V. I. Nikolaev, Anal. Chem. 39 (1984) 1268.
    [58]. A. P. Bruins, T. R. Covey, J. D. Henion, Anal. Chem. 59 (1987) 2642.
    [59]. J. A. Olivares, N. T. Nguyen, C. R. Yonker, R. D. Smith, Anal. Chem. 59 (1987) 1232.
    [60]. J. H. Wahl, D. R. Goodlett, H. R. Udseth, R. D. Smith, Anal. Chem. 64 (1992) 3194.
    [61]. M. Wilm, M. Mann, J. Mass Spectrom. Ion Process 136 (1994) 167.
    [62]. M. G. Ikonom J. H. Wahl, D. R. Goodlett, H. R. Udseth, R. D. Smith, Anal. Chem. 64 (1992) 3194.
    [63]. A. J. Link, J. Eng, D. M. Schieltz, E. Carmack, G. J. Mize, D. R. Morris, B. M. Garvik, J. R. Yates, Nat Biotechnol. 17 (1999) 676.
    [64]. M. Z. Huang, H. J. Hsu, L. Y. Lee, J. Y. Jeng, J. T. Shiea, J Proteome Res. 5 (2006) 1107-1116.
    [65]. C. S. Jhang, H. Lee, Y. S. He, J. T. Liu, C. H. Lin, Electrophoresis. 33 (2012) 1-6.
    [66]. M. G. Ikonomou, A. T. Blades, P. Kebarle, Anal. Chem. 63 (1991) 1989.
    [67]. A. Gomez, K. Tang, Phys. Fluid. 65 (1994) 404.
    [68]. G. R. Agnes, I. I. Stewart, G. Horlick, Appl. Spectrosc. 48 (1994) 1347.
    [69]. P. Kebarle, L. Tang, Anal. Chem. 65 (1993) 972.
    [70]. J. V. Iribarne, B. A. Thornson, J. Chem. Phys. 64 (1976) 15.
    [71]. J. B.Fenn, J. Am. Soc. Mass Spectrom. 4 (1993) 524.
    [72]. 3D Printing Industry “The Free Beginner’s Guide”
    [73]. Gert I. J. Salentijn, H. P. Permentier, E. Verpoorte, Analytical Chemistry 86 (2014) 11657.

    下載圖示
    QR CODE