Author: |
卓沛彣 Chuo, Pei-Wen |
---|---|
Thesis Title: |
利用體驗式學習策略搭配3D列印技術進行科學抽象概念實作課程探討高中生科學學習成效、學習動機及實作能力之研究 The Study of Learning Motivation, Learning Efficiency and the Ability of Hands-on on Science Abstract Concepts for High School Students By 3D printing with Instructional Strategies |
Advisor: |
蕭顯勝
Hsiao, Hsien-Sheng |
Degree: |
碩士 Master |
Department: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
Thesis Publication Year: | 2015 |
Academic Year: | 103 |
Language: | 中文 |
Number of pages: | 209 |
Keywords (in Chinese): | 科學抽象概念 、3D列印技術 、體驗式學習策略 、實作課程 |
Keywords (in English): | science abstract concepts, 3D printing, instructional strategy, hands-on curriculum |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 191 Downloads: 12 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
3D列印的關鍵專利權到期,使得學校或學生對於機器或軟體的取得變得容易,促使教育界開始重視3D列印於教育上的使用。本研究欲利用體驗式學習策略搭配3D列印技術探討做中學,並透過STEM整合模式理念協助實驗教學課程設計,欲探討體驗式教學策略及3D列印技術實作教學結合是否能夠有效的幫助學習者在科學抽象觀念的理解與應用實踐、並且提高學生科學學習動機以及增強學生實作能力。
此次以新北市某高級中學一年級五個班級共159個學生為研究對象,使用生活科技進行教學活動,採準實驗研究設計,將研究對象分為三組,實驗組一3D列印技術結合體驗式學習策略進行課程實作學習;實驗組二則使用3D列印實作技術進行科學抽象概念學習;而對照組則進行手作實作課程進行課程學習。本次研究學生皆需根據教師提供的階段性任務問題及STEM知識學習進行成品製作學習科學抽象概念。活動過程各組根據其教學模式進行不同的引導策略與活動,並透過3D列印或手作技術解決任務問題並完成作品,以達到一完整實作學習。透過將抽象概念實體化的策略教學活動,能夠有效幫助學生增強其科學學習動機、科學抽象概念學習成效及實作能力。
Since the critical patent of 3D printing expired in 2014, fair-price printing machine has been gradually released. Thus, 3D printing technology begins to be evaluated the feasibility and practicability to implement in education. Based on this, the research which combine the instructional strategy and 3D printing to make learning by doing, besides design the teaching curriculum with STEM teaching method aims to discuss the effectiveness of 3D printing technology with instructional strategy in high school students’ abstract reasoning and practicing, learning motivation and the ability of hands-on on learning science abstract concepts.
The participants of this research are first-grade students from five classes in one senior high school in Taipei. Based on the quasi- experimental design, the study focuses on three situations: the experimental group one received hands-on curriculum through instructional strategy and 3D printing technology; the experimental two received hands- on curriculum with 3D printing and the control group received hands-on curriculum with hands-on craft. In the experimental design, the students have to solve the questions through group discussion and 3D printing technology or hands-on craft. By using the strategy of materializing the abstract concept, the research looks forward to enhancing students’ learning effectiveness, motivation and the skills of hands-on.
王澄霞(1995)。STS活動中之「學」與「教」。科學教育學刊,3(1),115-137。
呂美惠(2010)。國小生活科技課程應用電腦輔助繪圖之成效研究。國立高雄師範大學工業科技教育學系碩士班碩士論文,未出版,高雄市。
李佩育、周汎澔、林麗娟、張靜鳳(2013)。問題導向學習策略於「兒童虐待與疏忽」教育訓練課程活動成效之探討。高雄護理雜誌,30(3), 9-22。
李隆盛、吳正己、游光昭、周麗瑞、葉家棟、盧秋珍、沈章平(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。國家教育研究院「十二年國民基本教育領域綱要內容前導研究」整合型研究報告(編號 : NAER-102-06-A-1-02-09-1-18),未出版。
李鴻亮(2011)。結合 [體驗策略] 與多媒體教材於國小環境教育 [地層下陷] 單元學習成效之研究─ 多媒體教學成功因素之省思。教學科技與媒體,(97),64-82。
周立倫(2008)。推薦一個適合於中學生活科技課程學習及使用的 3D 繪圖軟體─ Rhinoceros 4.0。生活科技教育,41(1),2-11。
林世健(2013)。雲端印刷的創新應用-3D列印,中華印刷科技年報,65-75。
林正弘(1987)。科際整合的一個面向-各學科間方法的互相借用。一九八七年科際整合研討會論文集,347-354。
林坤誼、游光昭、洪國峰(2011)。操作技能對思考與實作表現影響之研究。課程與教學,14(4),161-185。
林建翰(2014)。透視3D列印狂潮的走向,光連-光電產業與技術情報,109(1),24-27。
林靜雯(2012)。國中學生為什麼改變了心智模式?以電學教-學序列為例。臺北市立教育大學學報教育類,43(1),59-92。
林靜雯、邱美虹(2009)。探究以學生心智模式為設計基礎之教-學序列對學生電學學習之影響。科學教育學刊,17(6),481-507。
林營宗(2013)。3D列印技術改變工業未來。三聯技術,87(1),24-26。
邱惠柔、林維彥、蔡孟蓉(2013)。樂高機器人課程對於科學學習動機之影響。 2013台灣數位學習發展研討會,台中市國立自然科學博物館。
邱皓政(2010)。量化研究與統計分析:SPSS/PASW 資料分析範例解析(第五版)。台北:五南。
計惠卿、張杏妃(2001)。全方位的學習策略-問題導向學習與教學設計模式。教學科技與媒體,55(1),17-30。
涂志銘、林秀玉、張賴妙理、鄭湧涇(2008)。符合建構論理念的教學策略對植物的養分與能量概念學習的成效。科學教育學刊,16(1), 75-103。
張玉山(2003)。虛擬團隊之創造力研究-以師院勞作課程為例。國立台灣師範大學工業科技教育研究所博士論文,未出版,臺北市。
張玉山、黃國斌(2011)。以 3D 繪圖軟體-Google SketchUp 融入生活科技課程 [設計與製作] 能力學習活動。生活科技教育,44(4),33-48。
張秀鈴(2013)。實施5E探究教學模式對九年及學生科學學習動機及科學探就能力表現之研究。國立台南大學材料科學所碩士論文,未出版,台南市。
張春與(1989)。現代心理學辭典。台北:東華書局。
張瑋容(2013年8月1日)。為何歐巴馬強調製造業要留在美國?談3D列印技術應用與發展。北美智權報,89期。
陳盈如(2009)。應用數位情境校園植物學習遊戲軟體輔助教學對高年級學生科學概念學習成效之研究。國立臺北教育大學自然科學教育學系碩士論文。
游光昭、林坤誼、洪國峰(2010)。從反思與實踐看國中生在科技實作活動中的學習歷程表現。課程與教學季刊,13(3),219-250。
黃寶鈿、李武勳(2002)。抽象概念的具體化教學-以莫耳概念為例。科學教育,253(1),48-50。
趙世範、陳季聰(2003)。解說抽象概念的數位內容教材製作之研究。科技教育課程改革與發展學術研討會論文集,2003,139-146。
蔡蕙文、羅希哲、朱怡貞、陳柏豪(2007)。國中 STEM 教學模式之實驗研究。科技教育課程改革與發展學術研討會論文集,2006,278-284。
蔡蕙文、羅希哲、朱怡貞、陳柏豪(2007)。國中STEM教學模式之實驗研究。科技教育課程改革與發展學術研討會論文集,2006,278-284。
蔡錫濤(1995)。國中生活科技課程理念及教學策略探討。中學工藝教育月刊,28(1),10-15。
鄭俊益、賴維祥(2010)。彩色立體印刷機-快速原型機之設計研究。產學合作暨成果發表專刊,國立成功大學機械科技研發中心,經濟部技術處學界科專計畫編號:95-EC-17-A-05-S1-0014。
蕭佩如(2010)。網路同步學習中智能與環境對大學生科技創造力的影響。國立台灣師範大學科技應用與人力資源發展學系碩士論文,未出版,台北市。
謝明媛(2014)。3D列印潮全球都在瘋。禪天下,108(1),72-76。
聶健文、顏芳慧(2010)。實作導向的護理研究訓練成效評值。南臺灣醫學雜誌,6(1),30-37。
羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究,人文社會科學研究,3(3), 42-66。
羅希哲、蔡慧音、曾國鴻(2011)。高中女生STEM 網路專題式合作學習之研究。高雄師大學報,30(1),41-46。
蘇虹(2004)。促進學生形象思維與抽象思維的協同發展-小學數學教學中強化概念教學的一些做法。中國教育學刊,2004(5),34-37。
Adamson, K. A. (2012). Piloting a method for comparing two experiential teaching strategies.Clinical Simulation in Nursing, (8), 375-382.
Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5), 553- 563.
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of Creative Products: Review and Synthesis.The Journal of Creative Behavior,15(3), 158-178.
Bull, G., & Berry, R. (2011). Classroom engineering and craft technologies. Learning and Leading with Technology, 38, 26–27.
Carlton, K. (1999). Teaching electric current and electrical potential. Physical Education, 34(6), 341-345.
Dale, E. (1969). Audiovisual methods in teaching. New York: The Dryden Press.
Dewey, J. (1952). Experience and nature (2nd ed.). Chicago, IL: Open Court Publishing Company.
Dewey, J., & Dewey, E. (1915). Schools of to-morrow. Dent.
Dickinson, G., & Jackson, J. K. (2008). Planning for success: How to design and implement project based science activities. The Science Teacher, 75(8), 29–32.
Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (pp. 46-69). Chicago: The University of Chicago Press
Eisenberg, M. (2013). 3D printing for children: What to build next? International Journal of Child-Computer Interaction,1(1), 7-13.
Finnerty, V. R. (2006). Learning genetics with paper pets. Science Scope, 29(6), 18–23.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2007). Nonscience majors learning science: A theoretical model of motivation.Journal of Research in Science Teaching,44(8), 1088-1107.
Gooden, K. (2005). Biome is where the art is. Science and Children, 43(1), 28–32.
Guzzetti, B.J., Williams, W.O., Skeels, S. A., &Wu, S. M. (1997). Influence of text structure on learning counterintuitive phtsics concepts. Journal of Research in science Teaching, 34(7), 709-719.
Horváth, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A., & Rothen-Rutishauser, B. (2015). Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific reports, 5.
Klopp, T. J., Rule, A. C., Schneider, J. S., & Boody, R. M. (2014). Computer Technology-Integrated Projects Should not Supplant Craft Projects in Science Education. International Journal of Science Education,36(5), 865-886.
Kolb, A. Y., & Kolb, D. A. (2008). Experiential learning theory: A dynamic, holistic approach to
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.
Kostakis, V., Niaros, V., & Giotitsas, C. (2014). Open source 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and Informatics, 32(1), 118-128.
Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. Journal of Cleaner Production,70, 90-96.
Lachance, J. A., & Mazzocco, M. M. M. (2006). A longitudinal analysis of sex differences in math and spatial skills in primary school age children. Learning and Individual Differences, 16, 195–216.
Lee, J. H., McCullouch, B. G., & Chang, L. M. (2008). Macrolevel and microlevel frameworks of experiential learning theory in construction engineering education. Journal of Professional Issues in Engineering Education and Practice, 134(2), 158-164.
Lemeke, J. L (1990).Science, semantics: Language, learning and values. Norwood, NJ: Ablex.
Lillard, A. S. (2005). Montessori: The science behind the genius. New York: Oxford University Press.
Lipson, H., & Kurman, M. (2013). Fabricated: The new world of 3D printing. John Wiley & Sons.
Liu, G., Jiao, Z., & Liu, S. (2009, March). Tutoring strategy study on game-based experiential learning in vocational school. In Education Technology and Computer Science, 2009. ETCS'09. First International Workshop on (Vol. 3, pp. 1043-1046).
Liu, Y. F., Xu, L. W., Zhu, H. Y., & Liu, S. S. Y. (2014). Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomedical engineering online, 13(1), 63.
Massachusetts Department of Education.(2001).Science and technology/engineering framework. Retrieved July 17,2014,from http://www.doe.mass.edu/frameworks/scitech/2001/
Mathewson, J. H. (2005). The visual core of science: Definition and applications to education. International Journal of Science Education, 27(5), 529–548.
McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education, 14(1), 21-44.
McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anatomical Sciences Education, 7(6), 479-486
Min, K. J., Jackman, J., & Chan, J. Visual Models for Abstract Concepts towards Better Learning Outcomes and Self-Efficacy. In Proceedings of 121st ASEE Annual Conference & Exposition, Indianapolis, Indiana.
Morgan, P. J., Cleave-Hogg, D., Desousa, S., & Lam-McCulloch, J. (2006). Applying theory to practice in undergraduate education using high fidelity simulation. Medical Teacher, 28, e10-e15.
Morlaix, S. (2010). Assessing pupils’ skills: implications for research. Journal of Curriculum Studies, 42(3), 395-409.
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773-785.
Networking, N. M. (2014). The NMC Horizon Report: 2014 K.
Noyes, E., & Deligiannidis, L. (2012). 2D and 3D Visualizations of Creative Destruction for Entrepreneurship Education. In Human–Computer Systems Interaction: Backgrounds and Applications 2 (pp. 277-294). Springer Berlin Heidelberg.
Papert, S., 1980a. Mindstorms. Children, Computers and Powerful Ideas. Basic books, New York.
Papert, S., 1980b. Teaching children thinking. In: Taylor, R.P. (Ed.), The Computer in the School: Tutor, Tutee, Tool.
Petrina, S. (2007). Advanced teaching methods for the technology classroom. Hershey, PA: Information Science Publishing.
Piaget, J. (1977).The development of thought: Equilibration of cognitive structures.(Trans A. Rosin). Viking.
Root-Bernstein, R., & Root-Bernstein, M. (2013, February). The art and craft of science: Scientific discovery and innovation can depend on engaging more students in the arts. Educational Leadership, 70(5), 16–21.
Seaman, J., Beightol, J., Shirilla, P., & Crawford, B. (2010). Contact theory as a framework for experiential activities as diversity education: An exploratory study. Journal of Experiential Education, 32, 207-225.
Song, Y., Huang, M., Yang, M., & Wang, B. (2011). An Applied Research of Experiential Learning in College English Teaching Based on Network Resource. In Advances in Computer Science, Environment, Ecoinformatics, and Education (pp. 418-422). Springer Berlin Heidelberg.
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: A critical review. American Psychologist, 60(9), 950–958.
Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. New York: Cambridge University Press.
Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J., Bowman, R. W., ... & Cronin, L. (2012). Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 4(5), 349-354.
Taylor, H. A., & Hutton, A. (2013). Think3d!: Training Spatial Thinking Fundamental to STEM Education. Cognition and Instruction,31(4), 434-455.
The New York State Systemic Initiative.(1997). Mathematics, Science and Technology Resource Guide. Retrieved May 11, 2003, from http://www.emsc.nysed.gov/guides/mst/
Twigger,D., Byard, M, Driver, R. (1994). The conception of force and moton of students aged beween 10 and 15 years: an interview study designed to guide instruction. International Jiurnal of Science Edcation, 16(2), 215-229.
Weaver, G. C. (1998). Strategies in K-12 science instruction to promote conceptual change. Science Education, 82(4), 455-472.