簡易檢索 / 詳目顯示

研究生: 林珊
論文名稱: 電鍍苯胺類分子在金與矽表面的製備與鑑定
Fabrication and Characterization of Electrografted Aminophenyl Groups at Gold and Silicon Surfaces
指導教授: 洪偉修
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 電鍍苯胺類分子
論文種類: 學術論文
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文,是以電化學偶氮化還原的方式在基材表面上電鍍含有苯胺官能基的長碳鏈分子,選用的基材為金基材和矽晶片。藉由電化學,X光-光電子能譜圖,全反射式紅外線光譜來鑑定基材表面上的分子,以及使用CAFM來量測導電特性。
    實驗結果顯示,我們成功以電化學電鍍的方式可以在金表面上鍵結長碳鏈苯胺分子;隨著電鍍的樣品分子碳鏈越長,交界處的電阻會呈現指數性的增大,測樣品表面的導電性質時,當施加在探針的力越大,所量測到的電流值就會越大,並且是呈現指數性的劇增。利用Simmons equation計算出的length-dependent decay parameter, β為0.27 Å-1(電壓為± 1.5 V)。將電化學電鍍製成的樣品與以自組裝薄膜方式製成的樣品相比較,會發現以電鍍方式製成的樣品穩定性較好。另外,在矽晶片上以電鍍方式製作的樣品,則是會受到電鍍溶液中溶劑為水溶液的影響,使得矽晶片表面也同時有形成二氧化矽,讓樣品在矽晶片上的導電特性難以被明確測量到。

    In this thesis, we report that the aminophenyl group was grafted at the Au and Si surfaces with electrochemical deposition via the reduction of aminophenyl monodiazonium cations. The presence of the aminophenyl group on the surface was demonstrated with cyclic voltammetry (CV),
    X-ray photoelectron spectroscopy (XPS), and attenuated total reflection infrared spectroscopy (ATR-IR). The conductive atomic force microscopy (CAFM) was used to record electrical properties of the aminophenylgrafted
    surfaces.
    The CAFM was employed to measure the junction resistance
    between the probe tip and the molecular film. Our experimental results indicated that the junction resistance increased exponentially with the alkyl chain length. The junction resistance decreased with the increase of the load force applied to the tip. The length-dependent decay parameter, β,was found to be 0.27 Å-1 which was independent of applied bias (over a voltage range of ± 1.5 V). The aminophenyl-grafted Au surface exhibited a surface electrical resistance comparable to the self-assembled ODT
    monolayer. The aminophenyl-graft Si surface showed the different electrical behaviors from the corresponding Au surface because the Si oxides were inevitably formed during the electrical deposition in aqueous solution.

    中文摘要...................................................................................................Ⅰ 英文摘要...................................................................................................Ⅱ 目錄...........................................................................................................Ⅲ 圖目錄.......................................................................................................Ⅵ 表目錄...................................................................................................ⅩⅠ 第一章 序論............................................................................. 1 1-1 前言....................................................................................................1 1-2 介電效應............................................................................................3 1-3 介電崩潰電壓....................................................................................5 1-4 有機薄膜............................................................................................5 1-5 自組裝薄膜........................................................................................8 1-6 導電原子力顯微鏡...........................................................................12 1-7 研究動機與目的...............................................................................13 第二章 儀器原理................................................................................15 2-1 循環伏安法(CV)..........................................................................15 2-2 X 光光電子能譜儀(XPS)............................................................17 2-3 原子力顯微鏡(AFM) ..................................................................19 2-3-1 成像原理................................................................................20 2-3-2 掃描方式................................................................................21 2-3-3 系統結構................................................................................27 2-4 導電原子力顯微鏡(CAFM)........................................................31 第三章 實驗流程及儀器介紹.........................................................33 3-1 藥品...................................................................................................33 3-2 金基板的製備...................................................................................34 3-3 矽晶片的製備...................................................................................35 3-4 電極裝置圖.......................................................................................35 3-5 實驗用探針.......................................................................................36 3-6 實驗儀器...........................................................................................36 3-7 實驗步驟...........................................................................................37 第四章 實驗結果與討論..................................................................39 4-1 金表面電鍍上分子的製備...............................................................39 4-1-1 循環伏安法(CV)的量測...................................................39 4-2 金表面電鍍上分子的鑑定...............................................................47 4-2-1 樣品表面元素分析(XPS) .................................................47 4-2-2 表面之元素分析(ATR-IR)................................................50 4-2-3 接觸角之量測(Contact Angle)..........................................52 4-2-4 AFM 量測樣品表面型態......................................................53 4-2-5 橢圓測厚儀量測樣品薄膜厚度.............................................56 4-3 金表面電鍍上分子的導電特性.......................................................57 4-3-1 CAFM 探針測量時所施的力對導電的影響.......................57 4-3-2 覆蓋率(Coverage)不同對樣品表面導電的影響.............62 4-3-3 苯胺類分子樣品表面的電流電壓(I-V)圖.......................66 4-3-4 溫度變化對樣品表面的導電影響.........................................74 4-3-5 金表面電鍍上樣品與自組裝薄膜的導電比較.....................77 4-4 矽晶片表面電鍍上樣品分子...........................................................79 4-4-1 矽晶片表面樣品的製備.........................................................79 4-4-2 矽晶片表面樣品的鑑定.........................................................81 4-4-3 矽晶片表面樣品的導電特性.................................................84 第五章 結論與未來展望..................................................................85 第六章 參考文獻................................................................................87 圖目錄 第一章 序論 圖1-1 介電質材料能隙圖.......................................................................2 圖1-2 場效電晶體常見的三種類型.......................................................3 圖1-3 介電崩潰電壓示意圖...................................................................5 圖1-4 Pentacene 材料結構圖..................................................................6 圖1-5 P3HT 材料結構圖.........................................................................7 圖1-6 自組裝單層膜的形成..................................................................10 圖1-7 分子吸附在基材表面的SAM 薄膜結構圖...............................11 圖1-8 分子在兩個金屬中,金屬原子連結分子可能的位置..............13 第二章 儀器原理 圖2-1 循環伏安法之波形......................................................................16 圖2-2 循環伏安法之電流圖..................................................................17 圖2-3 XPS 原理示意圖..........................................................................18 圖2-4 兩原子之間距離(r)與能量的關係.........................................20 圖2-5 定力模式掃描法示意圖..............................................................23 圖2-6 定高模式掃描法示意圖..............................................................24 圖2-7 交流法非接觸式掃描作用力顯微鏡之結構圖..........................25 圖2-8 AFM 三種不同掃描模式示意圖................................................27 圖2-9 壓電材料元件可為三軸掃描裝置..............................................28 圖2-10 光束偏折法之配置圖................................................................29 圖2-11 原子力顯微鏡系統架構示意圖................................................30 圖2-12 CAFM 模組電路架構示意圖....................................................31 第三章 實驗流程及儀器介紹 圖3-1 金基板結構示意圖......................................................................34 圖3-2 CV 實驗裝置簡圖........................................................................35 圖3-3 PPP-CONPt 探針SEM 影像圖...................................................36 第四章 實驗結果與討論 圖4-1 Reaction of Amines with Nitrous Acid ........................................39 圖4-2 苯胺分子偶氮化還原在金基材上反應圖..................................40 圖4-3-1 4-Hexylaniline 的CV 圖..........................................................41 圖4-3-2 4-Hexylaniline 的電流圖和覆蓋率..........................................41 圖4-4-1 4-Octylaniline 的CV 圖...........................................................42 圖4-4-2 4-Octylaniline 的電流圖和覆蓋率..........................................42 圖4-5-1 4-Decylaniline 的CV 圖..........................................................43 圖4-5-2 4-Decylaniline 的電流圖和覆蓋率..........................................43 圖4-6-1 4-Dodecylaniline 的CV 圖......................................................44 圖4-6-2 4-Dodecylaniline 的電流圖和覆蓋率......................................44 圖4-7-1 4-Tetradecylaniline 的CV 圖...................................................45 圖4-7-2 4-Tetradecylaniline 的電流圖和覆蓋率...................................45 圖4-8 CV 電鍍第30 圈時金基材表面上的覆蓋率.............................46 圖4-9 XPS 的全譜圖..............................................................................48 圖4-10 C1s 的XPS 圖譜.........................................................................48 圖4-11 C 1s 與Au 4f7/2 peak 積分面積的比值......................................50 圖4-12 ATR-IR 的光譜圖......................................................................51 圖4-13 Bare Au 及鍍上樣品後的接觸角量測結果圖..........................52 圖4-14 AFM 表面形態圖(a)Bare Au,被鍍上樣品的金表面(b)4-hexylaniline,( c)4-octylaniline,(d)4-decylaniline,(e)4-dodecylaniline, (f)4-tertdecylaniline ..................................................................................54 圖4-15 以CAFM 測量分子介面導電性質示意圖...............................58 圖4-16 金表面電鍍上4-Octylaniline,以不同Load Force 所量測的 I-V圖........................................................................................................59 圖4-17 金表面電鍍上4-Tetradecylaniline,以不同Load Force 所量測 的I-V 圖...................................................................................................59 圖4-18 電壓施加0.15 V,分別在測量4-Octylaniline 與4-Tetra decylaniline 的探針上施加不同的力對於電流的影響........................60 圖4-19 AFM 以不同Load Force 量測的示意圖..................................61 圖4-20 金表面電鍍上4-Dodecylaniline 在CV(a)第1 圈(b)第2 圈(c)第5 圈(d)第10 圈的電流高低圖(Bias = 0.5 V) ............63 圖4-21 金基材以不同的CV 掃描圈數電鍍上4-Decylaniline 所量測的 I-V 圖........................................................................................................65 圖4-22 金基材以不同的CV 掃描圈數電鍍上4-Dodecylaniline 所量測 的I-V 圖...................................................................................................65 圖4-23 (A) Metal-Molecule-Metal Junction,(B) 連接處電子能量能 階差的示意圖...........................................................................................66 圖4-24 金表面電鍍上樣品後的I-V 圖................................................67 圖4-25 施加 2V 電壓時,相當於改變 1V 的金屬功函數,使得有效 的能障(barrier)改變............................................................................68 圖4-26 金表面電鍍上樣品分子I-V 圖(電流值為絕對值) ............69 圖4-27 金表面電鍍上樣品後的I-V 圖(-0.3~0.3 V) .....................70 圖4-28 金表面電鍍上的樣品薄膜厚度與平均電阻的關係圖............72 圖4-29 在兩個電極(substrate 與tip)之間的樣品分子橋...............72 圖4-30 金表面電鍍上樣品後的Breakdown I-V 圖............................74 圖4-31 金表面電鍍上4-Tetradecylaniline 在不同溫度下的I-V 圖...76 圖4-32 金表面電鍍上4-Tetradecylaniline 分別在室溫,以及在空氣中 跟真空下加熱至50 和100 度的I-V 圖.................................................76 圖4-33 ODT 與4-Doecylaniline、4-Tetradecylaniline I-V 比較圖.....78 圖4-34 電鍍樣品分子與ODT 的電阻比較圖......................................78 圖4-35 Si(100)表面與HF 反應得到Si-H..........................................79 圖4-36 (a)矽晶片上電鍍4-Hexylaniline 的CV 圖,(b)定電壓電 鍍4-Hexylaniline 的電流-時間(I-t)圖.............................................80 圖4-37 Blank Si 與矽表面電鍍上4-Hexylaniline 的XPS 全譜圖......82 圖4-38 矽表面電鍍上4-Hexylaniline 的(a)C1s、(b)O1s、(c)Si2p 的 XPS 圖譜..................................................................................................82 圖4-39 在矽晶片、以及金基材表面電鍍上4-Hecylaniline 樣品的I-V 比較圖.......................................................................................................84 表目錄 第一章 序論 表1-1 TFT 與OTFT 製程比較...............................................................8 表1-2 常見的SPM 技術........................................................................12 第四章 實驗結果與討論 表4-1 C1s 與Au 4f7/2 peak 積分面積的比值........................................49 表4-2 表面粗糙度(Rms)的比較.......................................................55 表4-3 樣品薄膜的厚度..........................................................................56 表4-4 不同電鍍方式下,Blank Si、CV 掃描、定電壓電鍍,XPS 所 測得的C1s、O1s、Si2p 強度的比值.........................................................83

    1.A. E. Brenner, Science, 1997, 275, 1401.
    2.M. Lundstorm, Science, 2003, 299, 210.
    3.H.-S. P. Wong, IBM J. RES & DEV, March/May, 2002, 46, 133.
    4.S. M. Sze, and Kwok K. Ng, “Physics of Semiconductor Devices”, Third Edition.
    5.Y. Yang and F. Wudl, Adv. Mater. 2009, 21, 1401.
    6.D. Braga and G. Horowitz, Adv. Mater. 2009, 21, 1473.
    7.Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 1998, 120, 207.
    8.W. C. Bigelow, D. L. Pickett, and W. A. Zisman, Collid Interface Sci. 1946, 1, 513.
    9.R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481.
    10.C. L. McGuiness, A. Shaporenko, C. K. Mars, S. Uppili, M. Zharnikov, and D. L. Allara, J. Am. Chem. Soc. 2006, 128, 5231.
    11.J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
    12.A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, and C. D. Frisble, Adv. Mater. 2003, 15, 1881.
    13.J. M. Beebe, B. Kim, J. W. Gadzuk, C. D. Frisble, and J. G. Kushmerick, Phys. Rev. Lett. 2006, 97, 026801
    14.C. Chu, J-S. Na, and G. N. Parsons, J. Am. Chem. Soc. 2007, 129, 2287.
    15.D. S. Sutar, S. Lenfant, D. Vuillaume, and J. V. Yakhmi, Organic Electronics, 2008, 9, 602.
    16.R. W. Carpick, M. Salmeron, Chem. Rev. 1997, 97, 1163.
    17.Douglas A. Skoog, F. James Holler, Timothy A. Nieman, “Principles of Instrumental Analysis”, Fifth Edition.
    18.汪建民主編,材料化學。
    19.L. Aguilera, M. Lanza, M. Porti, J. Grifoll, M. Nafria, and X. Aymerich, Rev. Sci. Instrum. 2008, 79, 073701.
    20.D. Goncalves, and E. A. Irene, Langmuir. 2001, 17, 5031.
    21.http://www.nanosensors.com/PPP-CONTPt.htm
    22.J. Lyskawa, and D. Belanger, Chem. Mater. 2006, 18, 4755-4763.
    23.A. Adenier, C. Combellas, F. Kanoufi, J. Pinson, and F. I. Podvorica, Chem. Mater. 2006, 18, 2021-2029.
    24.S. P. Koiry, D. K. Aswal, V. Saxena, N. Padma, A.K. Chauhan, N. Joshi, S. K. Gupta, and J. V. Yakhmi, Appl. Phys. Lett. 2007, 90, 113118.
    25.S. P. Koiry, D. K. Aswal, A.K. Chauhan, V. Saxena, S. K. Nayak, S. K. Gupta, and J. V. Yakhmi, Chem. Phys. Lett. 2008, 453, 68.
    26.D. K. Aswal, S. P. Koiry, B. Jousselme, S. K. Gupta, S. Palacin, and J. V. Yakhmi, Physica E, 2009, 41, 325.
    27.J. He, Z.-H. Lu, S. A. Mitchell, and D. D. M. Wayner, J. Am. Chem. Soc. 1998, 120, 2660.
    28.http://www.sigmaaldrich.com/spectra/ftir/FTIR003398.PDF
    29.D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to Spectroscopy”, Third Edition.
    30.G. Wang, T.-W. Kim, G. Jo, and T. Lee, J. Am. Chem. Soc. 2009, 131, 5980.
    31.H. Song, H. Lee, and T. Lee, Ultramicroscopy. 2008, 108, 1196.
    32.J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, J. Am. Chem. Soc. 2001, 123, 5616.
    33.D. Segal, A. Nitzain, W. B. Davis, M. R. Wasielewski, and M. A. Ratner, J. Phys. Chem. B, 2000, 104, 3817.
    34.V. Mujica, A. E. Roitberg, and M. Ratner, J. Chem. Phys. 2000, 112, 6834.
    35.B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, and E. Zojer, Adv. Funct. Mater. 2007, 17, 2687.
    36.D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisible, J. Phys. Chem. B, 2002, 106, 2813.
    37.B. Kim, J. M. Beebe, Y. Jun, X.-Y. Zhu, and C. D. Frisible, J. Am Chem. Soc. 2006, 128, 4970.
    38.V. B. Engelkes, J. M. Beebe, and C. D. Frisible, J. Am. Chem. Soc. 2004, 126, 14287.
    39.J. G. Simmons, J. Appl. Phys. 1963, 34, 1793.
    40.D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc. 2001, 123, 5549.
    41.R. Landauer, Phys. Lett. A 1981, 85, 91.
    42.D. Scaini, M. Castronovo, L. Casalis, and G. Scoles, ACS Nano, 2008, 2, 507.
    43.C. Chu, J.-S. Na, and G. N. Parsons, J. Am. Chem. Soc. 2007, 129, 2287.
    44.L. A. Bumm, ACS Nano, 2008, 2, 403.
    45.D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, Analytica Chimica Acta, 2006, 568, 84.
    46.A. Salomon, T. Boecking, O. Seitz, T. Markus, F. Amy, C. Chan, W. Zhao, D. Cahen, and A. Kahn, Adv. Mater. 2007, 19, 445.

    無法下載圖示 本全文未授權公開
    QR CODE