簡易檢索 / 詳目顯示

研究生: 丁可彧
Ting, Ko-Yu
論文名稱: 合成錳摻雜硒化鎘團簇物負載碳材的鑑定
Synthesis and Characterizations of Mn-doped (CdSe)13 attached to carbon materials
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 趙宇強
Chao, Yu-Chiang
高琨哲
Kao, Kun-Che
劉沂欣
Liu, Yi-Hsin
口試日期: 2023/07/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: 硒化鎘奈米團簇物稀磁性半導體氧響應氧化石墨烯複合材料
英文關鍵詞: cadmium selenide, magic-size clusters, diluted magnetic semiconductors, oxygen sensing, graphene oxide, heterostructure
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301588
論文種類: 學術論文
相關次數: 點閱:52下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份透過元素硒粉末代替價格昂貴的硒脲作為改良硒前驅物合成魔術尺寸硒化鎘奈米團簇物((CdSe)13 MSCs),透過紫外光-可見光譜儀、X光粉末繞射、感應耦合電漿放射光譜、元素分析、紅外光譜、固態核磁共振光譜、DFT理論計算等,證實其同樣為(CdSe)13 MSCs,亦發現與原方法不同地方,替換前驅物後,表面配體由單純胺基組成胺基與醋酸根共配位,並由DFT計算出較大的放熱焓輔佐確認醋酸根增強了反應穩定性。之後皆引入具有未成對電子的二價錳離子以提供比對,透過X光粉末繞射、紫外光-可見光光譜、螢光光譜、感應耦合電漿放射光譜、X光吸收光譜延伸精細結構,得知硒粉合成具較高的錳有效摻雜(最高有效摻雜濃度可達13.5%)、放光強度。
    第二部份將錳摻雜(CdSe)13 MSCs之光學性質進行延伸,之後測量反射式光致發光光譜並在反覆填滿/阻隔大氣下測量放光性質之差異,揭示氧氣對錳放光進行暫時性干擾而下降,再除去氧氣後會上升,形成可逆的螢光猝滅趨勢,以探討磷光性質半導體對氣體傳感之應用可能。
    第三部份以氧化石墨烯作為生長模板,一來限制(CdSe)13 MSC均勻生長,二來使錳離子能夠有效分散,以X光粉末繞射、紫外光-可見光光譜得知透過螢光光譜、磷光半生期光譜、電子順磁共振光譜儀、電化學儀鑑定,得知將錳離子之光生載流子轉移至GO以抑制電子電洞複合(PL-lifetime、EIS)降低阻抗,導致螢光猝滅並且產生強電流響應,期望尋找半導體複合材料之應用可能性。

    In the first part of this study, the magic size cadmium selenide nanoclusters ((CdSe)13 MSCs) were synthesized by replacing the expensive selenourea with elemental selenium powder as an improved selenium precursor. Through ultraviolet-visible spectroscopy, X-ray powder diffraction, inductively coupled plasma emission spectroscopy, elemental analysis, infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy, DFT theoretical calculations, etc., it was confirmed that they were also (CdSe) 13 MSCs. Reaction stability and increased crystallinity. Afterwards, divalent manganese ions with unpaired electrons were introduced to provide comparison. Through X-ray powder diffraction, ultraviolet-visible light spectroscopy, fluorescence spectroscopy, inductively coupled plasma emission spectroscopy, and X-ray absorption spectroscopy to extend the fine structure, it is known that the synthesis of selenium powder has higher manganese effective doping and emission intensity.
    The second part extends the optical properties of manganese-doped (CdSe)13 MSCs, and then measures the reflective photoluminescence spectrum and the difference in light emission properties under repeated filling/blocking atmospheres, revealing that oxygen temporarily interferes with manganese light emission and then decreases, and then rises after removing oxygen, forming a reversible fluorescence quenching trend, in order to explore the possible application of phosphorescent semiconductors to gas sensing.
    The third part uses graphene oxide as a growth template to limit the uniform growth of (CdSe)13 MSC, and to enable effective dispersion of manganese ions. X-ray powder diffraction and ultraviolet-visible light spectroscopy are used to identify through fluorescence spectroscopy, phosphorescence half-lifetime spectroscopy, electron paramagnetic resonance spectroscopy, and electrochemical instrument identification. It is known that the photogenerated carriers of manganese ions are transferred to GO to inhibit electron-hole recombination, resulting in fluorescence quenching and possible photoresponse. It is expected to find the application possibility of semiconductor composite materials.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 圖索引 viii 表索引 xiv 第一章 緒論 1 1.1 硒化鎘奈米團簇物的發現及發展 1 1.1.1 零維奈米團簇物 1 1.1.2 過渡金屬摻雜零維團簇物 5 1.1.3 硒前驅物對團簇物電子結構、形貌及錳摻雜量之影響 7 1.2 半導體對氧氣響應之應用 17 1.3 碳材料生長半導體之異質結構 18 1.4 研究動機 20 第二章 實驗方法 21 2.1 化學藥品 21 2.2 雙生(CdSe)13奈米團簇物之合成 22 2.2.1 硒前驅物 22 2.2.2 鎘前驅物 22 2.2.3 硒化鎘奈米團簇物 23 2.3 合成摻雜錳之硒化鎘奈米團簇物 24 2.4 氧化石墨烯內生長(CdSe)13 25 2.5 硒化鎘奈米團簇物電極元件的製作 26 2.6 儀器鑑定 27 2.6.1 紫外-可見光吸收/反射式光譜儀 (UV-vis/DRA) 27 2.6.2 螢光光譜儀 (PL) 27 2.6.3 穿透式電子顯微鏡 (TEM) 28 2.6.4 能量色散X-射線光譜 (EDX) 28 2.6.5 紅外光譜儀 (FT-IR) 28 2.6.6 元素分析儀 (EA) 29 2.6.7 感應耦合電漿放射光譜儀(ICP-OES) 29 2.6.8 理論計算 29 2.6.9 X光粉末繞射儀 (PXRDs) 30 2.6.10 電子順磁共振光譜儀 (EPR) 31 2.6.11 磷光放光生命週期光譜儀 (Time-PL) 32 2.6.12 磁圓偏振二色性光譜儀 (MCD) 32 2.6.13 X光吸收光譜-吸收X光延伸精細結構 (EXAFS) 33 2.6.14 四極探針台電性測量儀 (Probe station) 33 2.6.15 電化學交流阻抗法 (Electrochemical Impedance Spectroscopy, EIS) 34 2.7 名稱統整縮寫 35 第三章 結果與討論 36 3.1 不同硒前驅物對團簇物基本性質及錳摻雜合成之影響 36 3.1.1 元素組成 37 3.1.2 化學環境配位與鍵結 41 3.1.3 Mn2+引入產生放光性質 46 3.1.4 Mn2+引入對磁光性質、荷值比之影響 48 3.2 大氣影響Mn摻雜硒化鎘團簇物 51 3.2.1 大氣下穩定度影響 51 3.2.2 環境對光學性質之影響 52 3.2.3 環境對晶體結構之影響 53 3.3 附載氧化石墨烯硒化鎘團簇物、官能基氧化石墨烯性質探討 55 3.3.1 GO之表面官能基化 55 3.3.2 GO對團簇物尺寸與分散度之探討 57 3.3.3 電子結構與能隙 59 3.3.4 元素組成及化學環境 61 3.3.5 附載GO改變光學及自旋性質 63 3.3.6 導電性質探討 68 第四章 結論 72 參考資料 73

    1. Mao, J.; Liu, Z.; Ren, Z., Size effect in thermoelectric materials. npj Quantum Materials 2016, 1 (1), 16028.
    2. Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry 1996, 100 (31), 13226-13239.
    3. Busatto, S.; de Mello Donega, C., Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from? ACS Materials Au 2022, 2 (3), 237-249.
    4. Palencia, C.; Yu, K.; Boldt, K., The Future of Colloidal Semiconductor Magic-Size Clusters. ACS Nano 2020, 14 (2), 1227-1235.
    5. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y., Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials 2004, 3 (2), 99-102.
    6. Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M., A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Physical Chemistry Chemical Physics 2013, 15 (26), 10996-11005.
    7. Hsieh, T.-E.; Yang, T.-W.; Hsieh, C.-Y.; Huang, S.-J.; Yeh, Y.-Q.; Chen, C.-H.; Li, E. Y.; Liu, Y.-H., Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs. Chemistry of Materials 2018, 30 (15), 5468-5477.
    8. 謝宗恩, 魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討. 國立臺灣師範大學,臺北市 2018.
    9. Archer, P. I.; Santangelo, S. A.; Gamelin, D. R., Direct observation of sp− d exchange interactions in colloidal Mn2+-and Co2+-doped CdSe quantum dots. Nano letters 2007, 7 (4), 1037-1043.
    10. Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; Park, J.-H.; Kim, Y.-W.; Hwang, G. S.; Dobrowolska, M.; Furdyna, J. K.; Hyeon, T., Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nature Materials 2010, 9 (1), 47-53.
    11. Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H.-K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S.-J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped Semiconductor: Mn2+-Doped (CdSe)13 Clusters. Journal of the American Chemical Society 2015, 137 (40), 12776-12779.
    12. Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R., Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics. Advanced Functional Materials 2008, 18 (24), 3873-3891.
    13. Yang, X.; Pu, C.; Qin, H.; Liu, S.; Xu, Z.; Peng, X., Temperature- and Mn2+ Concentration-Dependent Emission Properties of Mn2+-Doped ZnSe Nanocrystals. Journal of the American Chemical Society 2019, 141 (6), 2288-2298.
    14. Baek, W.; Bootharaju, M. S.; Walsh, K. M.; Lee, S.; Gamelin, D. R.; Hyeon, T., Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nature Materials 2021, 20 (5), 650-657.
    15. 黃國綸, 以硼氫化鈉活化備製錳摻雜硒化鎘團簇物及鑑定器. 國立臺灣師範大學,臺北市 2021.
    16. Na, C. W.; Han, D. S.; Kim, D. S.; Kang, Y. J.; Lee, J. Y.; Park, J.; Oh, D. K.; Kim, K. S.; Kim, D., Photoluminescence of Cd1-x Mn x S (x≤ 0.3) Nanowires. The Journal of Physical Chemistry B 2006, 110 (13), 6699-6704.
    17. Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. i.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G., Large‐scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angewandte Chemie 2009, 121 (37), 6993-6996.
    18. Liu, Y.-H.; Wang, F.; Wang, Y.; Gibbons, P. C.; Buhro, W. E., Lamellar Assembly of Cadmium Selenide Nanoclusters into Quantum Belts. Journal of the American Chemical Society 2011, 133 (42), 17005-17013.
    19. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-Dimensional Colloidal Nanocrystals. Chemical Reviews 2016, 116 (18), 10934-10982.
    20. Ithurria, S.; Dubertret, B., Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level. Journal of the American Chemical Society 2008, 130 (49), 16504-16505.
    21. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E., Preparation of Primary Amine Derivatives of the Magic-Size Nanocluster (CdSe)13. Inorganic Chemistry 2013, 52 (6), 2933-2938.
    22. Bootharaju, M. S.; Baek, W.; Deng, G.; Singh, K.; Voznyy, O.; Zheng, N.; Hyeon, T., Structure of a subnanometer-sized semiconductor Cd14Se13 cluster. Chem 2022.
    23. Lin, F.; Li, F.; Lai, Z.; Cai, Z.; Wang, Y.; Wolfbeis, O. S.; Chen, X., MnII-Doped Cesium Lead Chloride Perovskite Nanocrystals: Demonstration of Oxygen Sensing Capability Based on Luminescent Dopants and Host-Dopant Energy Transfer. ACS Applied Materials & Interfaces 2018, 10 (27), 23335-23343.
    24. Lin, F.; Lai, Z.; Zhang, L.; Huang, Y.; Li, F.; Chen, P.; Wang, Y.; Chen, X., Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchimica Acta 2019, 187 (1), 66.
    25. Wang, S.; Jarrett, B. R.; Kauzlarich, S. M.; Louie, A. Y., Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging. Journal of the American Chemical Society 2007, 129 (13), 3848-3856.
    26. Abha, K.; Sumithra, I. S.; Suji, S.; Anjana, R. R.; Anjali Devi, J. S.; Nebu, J.; Lekha, G. M.; Aparna, R. S.; George, S., Dopamine-induced photoluminescence quenching of bovine serum albumin–capped manganese-doped zinc sulphide quantum dots. Analytical and Bioanalytical Chemistry 2020, 412 (23), 5671-5681.
    27. Abid; Sehrawat, P.; Islam, S. S.; Mishra, P.; Ahmad, S., Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Scientific Reports 2018, 8 (1), 3537.
    28. Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. G., Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano 2010, 4 (6), 3033-3038.
    29. Mondal, S.; Sudhu, S.; Bhattacharya, S.; Saha, S. K., Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures. The Journal of Physical Chemistry C 2015, 119 (49), 27749-27758.
    30. Lightcap, I. V.; Kamat, P. V., Fortification of CdSe Quantum Dots with Graphene Oxide. Excited State Interactions and Light Energy Conversion. Journal of the American Chemical Society 2012, 134 (16), 7109-7116.
    31. Mazaheritehrani, M.; Asghari, J.; Lotfi orimi, R.; Pahlavan, S., Microwave-Assisted Synthesis of Nano-Sized Cadmium Oxide As a New and Highly Efficient Catalyst for Solvent Free Acylation of Amines and Alcohols. Asian Journal of Chemistry 2010, 22, 2554-2564.
    32. Habibi, M. H.; Rahmati, M. H., Fabrication and characterization of ZnO@ CdS core–shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 133, 13-18.
    33. Baquero, E. A.; Ojo, W.-S.; Coppel, Y.; Chaudret, B.; Urbaszek, B.; Nayral, C.; Delpech, F., Identifying short surface ligands on metal phosphide quantum dots. Physical Chemistry Chemical Physics 2016, 18 (26), 17330-17334.
    34. Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V., The surface science of nanocrystals. Nature Materials 2016, 15 (2), 141-153.
    35. Zhou, Y.; Buhro, W. E., Reversible Exchange of L-Type and Bound-Ion-Pair X-Type Ligation on Cadmium Selenide Quantum Belts. Journal of the American Chemical Society 2017, 139 (37), 12887-12890.
    36. Madzhidov, T. I.; Chmutova, G. A., The nature of hydrogen bonds with divalent selenium compounds. Journal of Molecular Structure: THEOCHEM 2010, 959 (1), 1-7.
    37. Wu, R.; Hernández, G.; Odom, J. D.; Dunlap, R. B.; Silks, L. A., Simple enantiomeric excess determination of amines using chiral selones: unusual N–H⋯ Se bonding detected by HMQC 1 H/77 Se NMR spectroscopy. Chemical Communications 1996, (10), 1125-1126.
    38. Zhang, H.; Liu, J.; Wang, C.; Selopal, G. S.; Barba, D.; Wang, Z. M.; Sun, S.; Zhao, H.; Rosei, F., Near-Infrared Colloidal Manganese-Doped Quantum Dots: Photoluminescence Mechanism and Temperature Response. ACS Photonics 2019, 6 (10), 2421-2431.
    39. Irvine, S. E.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, S. W., Direct light‐driven modulation of luminescence from Mn‐doped ZnSe quantum dots. Angewandte Chemie 2008, 120 (14), 2725-2728.
    40. Pu, C.; Ma, J.; Qin, H.; Yan, M.; Fu, T.; Niu, Y.; Yang, X.; Huang, Y.; Zhao, F.; Peng, X., Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications. ACS Central Science 2016, 2 (1), 32-39.
    41. Han, B.; Gao, X.; Lv, J.; Tang, Z., Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. Advanced Materials 2020, 32 (41), 1801491.
    42. Barrows, C. J.; Vlaskin, V. A.; Gamelin, D. R., Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd1–xMnxSe Quantum Dots. The Journal of Physical Chemistry Letters 2015, 6 (15), 3076-3081.
    43. Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R., Digital Doping in Magic-Sized CdSe Clusters. ACS Nano 2016, 10 (7), 7135-7141.
    44. Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H., Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. Journal of the American Chemical Society 2020, 142 (49), 20616-20623.
    45. Mak, K. F.; Shan, J., Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics 2016, 10 (4), 216-226.
    46. Wu, M.; Li, Z.; Cao, T.; Louie, S. G., Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nature Communications 2019, 10 (1), 2371.
    47. Tessonnier, J.-P.; Barteau, M. A., Dispersion of Alkyl-Chain-Functionalized Reduced Graphene Oxide Sheets in Nonpolar Solvents. Langmuir 2012, 28 (16), 6691-6697.
    48. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters 2009, 9 (4), 1593-1597.
    49. Jang, J.; Pham, V. H.; Hur, S. H.; Chung, J. S., Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. Journal of Colloid and Interface Science 2014, 424, 62-66.
    50. Jeong, J. H.; Choi, M. C.; Nagappan, S.; Lee, W. K.; Ha, C. S., Preparation and properties of poly (lactic acid)/lipophilized graphene oxide nanohybrids. Polymer International 2018, 67 (1), 91-99.
    51. Li, P.; Zhu, B.; Li, P.; Zhang, Z.; Li, L.; Gu, Y. A Facile Method to Synthesize CdSe-Reduced Graphene Oxide Composite with Good Dispersion and High Nonlinear Optical Properties Nanomaterials [Online], 2019.
    52. Abdel-Salam, A. I.; Awad, M. M.; Soliman, T. S.; Khalid, A., The effect of graphene on structure and optical properties of CdSe nanoparticles for optoelectronic application. Journal of Alloys and Compounds 2022, 898, 162946.
    53. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Wang, F.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E., Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew Chem Int Ed Engl 2012, 51 (25), 6154-6157.
    54. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139 (16), 5660-5663.
    55. Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chemical Society Reviews 2012, 41 (2), 666-686.
    56. Williams, G.; Kamat, P. V., Graphene−Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25 (24), 13869-13873.
    57. Komeily-Nia, Z.; Chen, J.-Y.; Nasri-Nasrabadi, B.; Lei, W.-W.; Yuan, B.; Zhang, J.; Qu, L.-T.; Gupta, A.; Li, J.-L., The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Physical Chemistry Chemical Physics 2020, 22 (5), 3112-3121.
    58. Wang, B.; Fielding, A. J.; Dryfe, R. A. W., Electron Paramagnetic Resonance Investigation of the Structure of Graphene Oxide: pH-Dependence of the Spectroscopic Response. ACS Applied Nano Materials 2019, 2 (1), 19-27.
    59. Pham, C. V.; Krueger, M.; Eck, M.; Weber, S.; Erdem, E., Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment. Applied Physics Letters 2014, 104 (13).
    60. Laschuk, N. O.; Easton, E. B.; Zenkina, O. V., Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances 2021, 11 (45), 27925-27936.
    61. Meng, N.; Zhou, Y.; Nie, W.; Chen, P., Synthesis of CdS-decorated RGO nanocomposites by reflux condensation method and its improved photocatalytic activity. Journal of Nanoparticle Research 2016, 18 (8), 241.
    62. Zhang, N.; Zhang, Y.; Pan, X.; Yang, M.-Q.; Xu, Y.-J., Constructing Ternary CdS–Graphene–TiO2 Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation. The Journal of Physical Chemistry C 2012, 116 (34), 18023-18031.
    63. Liu, S.; Weng, B.; Tang, Z.-R.; Xu, Y.-J., Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale 2015, 7 (3), 861-866.

    下載圖示
    QR CODE