簡易檢索 / 詳目顯示

研究生: 林靜雯
Jing-Wen Lin
論文名稱: 由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 259
中文關鍵詞: 概念改變心智模式多重類比
英文關鍵詞: conceptual change, mental model, multiple analogies
論文種類: 學術論文
相關次數: 點閱:237下載:156
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電流概念的高度抽象性及「物質」、「能量」之間難以釐清的「混合」身份,致使學生對此概念之短期、長期的理解狀況皆不臻理想。而「類比」雖然在電學學習上長期扮演重要的角色,卻獲致兩面的評價。有學者認為應避免直接面臨唯物主題的類比以免妨礙概念改變,而其中流體的比喻更被視為是導致後續能量學習困難的主因(Slotta, Chi, & Joran, 1995); 但也有學者傾向於設計更為精緻的類比模式以減少另有概念的產生(陳瓊森, 1996),而多重類比便是其中一種受到盛讚的方式,許多學者認為其主要的優點在於克服另有概念、形成基模及協助問題解決(e.g. Spiro et al., 1989; Glynn et al., 1995; Clement, 1983; Zhang, 1997; Holyoak & Thagard, 1995b; Gick & Holyoak, 1983)。
    據上所述,本研究主要欲深究的目的有三:一、瞭解學生於電學教學起點前對電流所持類比的種類及想法,並探查經不同教學後,學生對電流的想法及所持類比種類變化的情形; 二、由概念改變、心智模式、學習成就、遷移歷程、負向向度的覺察及學習態度探究多重類比在電學概念學習時扮演的角色; 三、比較學生於教學前、中、後電流心智模式變化的情形。因此,本研究以電流通路及能量為教學主題,選取國小四年級中等程度的學生32名,隨機、平均分配至控制組、單一類比組、相似類比組及互補類比組四組進行研究。
    研究結果發現如下:
    1.教學前大部分學生對電流並不具任何類比模式,且傾向於以物質本體解決電流能量的問題,但學生若持有具體表徵,則以「水流」為最,且極易引發。
    2.教學後顯示多重類比有助於電學概念的學習,且互補多重類比組除於能量概念的學習及類比負向向度的覺察上優於其他三組外,亦自評多重類比有助於克服另有概念,且由述詞分析的結果觀之,其具概念改變的情形; 而相似組於通路概念的學習成就上雖略高於其他類比組,但並未達到顯著差異,且其於類比負向向度的覺察上多僅能抽取出兩類比之間的相似之處,而不易察覺類比的限制,但此組學生對多重類比有助於形成基模持正向肯定的態度。
    3.經本研究設計之兩燈泡串、並聯的通路晤談後,學生的電流心智模式於簡單及串聯通路共分6大類模式,而並聯則有5大類。歸納影響學生電流心智模式的因素,主要為:(1)視電池為一儲存槽應發出固定電流或燈泡應得致固定電流; (2)資源消耗模式; (3)分配電流的觀點; (4)順序推理模式; (5)節點的影響; (6)電路圖形的表徵; (7)封閉通路概念。這些因素顯示學生傾向於將電的世界視為一物質世界,並因而形成學習的預設。
    綜上所述,唯物類比並非阻礙學生概念改變的主因,而真正妨礙學生概念改變的是其將電流視為物質的預設。反之,只要類比的設計慮及欲教授概念的本質及預設,將有助於提供具體表徵,協助學生審視自我概念與科學概念的異同,進而造成概念改變。

    Due to high abstractness of electric current and its ”mixed” role between matter and energy, students’ comprehension of this concept is always incomplete. Although analogies have played important roles on electricity learning for a long time, they are double-edged on their value and problem.
    Some researchers suggest that the use of materialistic analogies keep students away from conceptual change, and the hydrodynamic analogy is considered as the main factor to lead to subsequently learning difficulty. The others suggest to devise more fineness analog models is an effective way to prevent students from constructing alternative concepts, and the set of multiple analogies is the best one of them. A lot of researchers think that the main advantages of multiple analogies are to overcome alternative concepts, to format schemas and to help to solve problem.
    Therefore, there are three purposes of this study: 1. Understanding students’ spontaneous analogies and conceptions for electric current prior school teaching, 2. Exploring the roles of multiple analogies on learning electricity concepts via analysis of students' mental models, achievements, transfer processes, awareness of analogy negative aspects and learning attitudes, 3. Comparing students’ mental model before and after teaching. Thirty-two four graders with performance (within one standard deviation from mean) were randomly assigned to a control group or three other treatment groups (namely a group with one single analogy, a group with similar analogies, and a group with complementary analogies).
    The results of this study are as follows:
    First, most students don't have any analogy models before teaching and they tend to use matter ontology to solve the problem of electric energy.
    Second, it shows that multiple analogies are helpful to the learning of electricity concepts, in particular, the students in the complementary analogies group are better than others in learning of energy concepts, awareness of analogies' negative aspects, and overcoming alternative concepts.
    Third, the students in the similar analogies group outperforms the other analogies group, but not reaching at significant level.
    Fourth, on the awareness of negative aspects, the students in the similar analogies group usually extract more similarities than restrictions from two analogies, and they present positive attitudes toward multiple analogies which help them to form electricity current scheme.
    Finally, the researcher identifies six mental models of series and simple circuits and five parallel ones. The main factors, which effect students' mental model, are 1. Treating battery as a tank, which supplies consistent electrical current, or thinking bulb should get consistent one, 2. Source-consumer model, 3. The view of repartition current, 4. Sequential-inference model, 5. The effect of nodes, 6. The representations of circuit diagram, 7. The concepts of closed circuit. These factors indicate that students tend to treat the electric world as a matter concept, thus forming the presupposition of learning.
    In order to help students aware the difference between self-concepts and scientific concepts, it is worthwhile considering the nature of scientific concepts and the presupposition of students' prior knowledge when we design learning materials with analogies in science education. Other educational implications and suggestions are discussed.

    第壹章 緒論………………………………………………………………..1 第一節 研究動機……………………………………………………..1 第二節 研究目的與問題……………………………………………..5 第三節 名詞釋義……………………………………………………..7 第四節 研究範圍與限制……………………………………………..9 第貳章 文獻探討…………………………………………………………..11 第一節 類比……….………………………………………………….12 第二節 類比的心智歷程……………………………………………..17 第三節 多重類比於科學概念學習扮演的角色……………………..21 第四節 概念改變……….…………………………………………….25 第五節 類比與概念改變……………………………………………..41 第六節 電學相關研究….…………………………………………….45 第參章 研究方法…………………………………………………………..55 第一節 研究對象.………..………………………………………….55 第二節 教材設計……………………………………………………..57 第三節 研究工具……………………………………………………..61 第四節 研究流程……….…………………………………………….68 第五節 資料處理與分析……………………………………………..70 第肆章 結果分析與討論…………………………………………………..75 第一節 電流之類比模式及想法……………………………………..75 第二節 教材成效的比較……………………………………………..83 第三節 遷移歷程的比較……………………………………………..90 第四節 概念改變的情形的比較…………………………………...101 第五節 類比的負向向度…………………………………….……..112 第六節 電流的心智模式…………………………………………...119 第七節 電流心智模式改變的原因……………………..……….…155 第八節 類比學習的態度……………………………………….…..176 第伍章 結論與建議………………………………………….…………..183 第一節 結論…………………………....…………………….…..183 第二節 建議………………………………………………………….191 參考文獻…………………………………………………………….……..197 附錄一:電學先備知識測驗卷……………………..………………209 附錄二:閱讀前練習教材—水的三態……………..………………211 附錄三:直立式密閉系統水車循環的閱讀………..………………212 附錄四:直立式密閉系統水車循環的測驗………..………………216 附錄五:閱讀教材………………………...…………………….…217 相似類比組教材………..………….………..……………...217 互補類比教材組…………………………………….………...225 附錄六:後測……………………………………………..…………232 附錄七:遷移歷程的時間測定…………………………..…………235 單一組遷移歷程的時間測定………………………..………..235 相似組遷移歷程的時間測定………………………..………..237 互補組遷移歷程的時間測定……………………….…….……241 附錄八:類比學習態度問卷……………………………..…………245 單一組類比學習態度問卷……………………………………..245 相似組類比學習態度問卷…………………………………..…246 互補組類比學習態度問卷……………………………………..247 附錄九:答題類型暨評分標準………………………………………248 附錄十:類比限制晤談內容…………………………………………257

    參考文獻
    一、中文部分
    Glynn, S. M., Yeany R. H., & Britton, B. K. 著。段曉林,熊召弟,熊同鑫,王美芬譯(1996):科學學習心理學。臺北市:心理。
    古智雄(1993):凸透鏡成像迷思概念的詮釋系統研究。國立台灣師範大學物理研究所碩士論文。(未出版)
    全中平(1996):以教材發展形成性評量的觀點探討國民小學二年級學童學習自然科有關簡單電路之通路及電流概念。國教學報,第8期,165-172。
    李靜,宋立軍,張大松(民83):科學思維的推理藝術。臺北市:淑馨。
    林孟慧(1998):理化類比對國三學生地球科學概念學習之影響。國立臺灣師範大學科學教育研究所碩士論文。(未出版)
    林靜雯(1999):類比與國小自然科科學概念的學習。科學教育研究與發展季刊,第14期,20-33。
    邱美虹(1993):科學教科書與概念改變。科學教育月刊,第163期,2-8。
    邱美虹(1993):類比與科學概念的學習。教育研究資訊,第一卷第六期,79-90。
    邱美虹(1996):學習策略與科學學習。科學教育月刊,第191期,2-15。
    邱美虹(1996):從STS和類比談科學學習。高中化學輔導團期刊,1-7。
    邱美虹(1998):概念改變研究的省思。中華民國第十四屆科學教育學術研討會,620-627。高雄:國立高雄師範大學。
    邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    南一書局(1999):國民小學自然教學指引第七冊(四上)。台南市:南一。
    徐順益(1986):國民中學物理科教師教學困難及問題調查研究。國科會專題研究報告。
    高淑芬(1997):類比對國二學生科學概念學習之影響。國立臺灣師範大學科學教育研究所碩士論文。(未出版)
    高淑芬,邱美虹(1998):類比的檢索與對應。科學教育學刊,第六卷第一期,63-80。
    國立編譯館(1991):國民小學自然科學指引第七冊(四上)改編本再版。台北市:國立編譯館。
    國立編譯館(1991):國民小學自然科學指引第八冊(四下)改編本再版。台北市:國立編譯館。
    國立編譯館(1995):國民小學自然科學指引第七冊(四上)改編本再版。台北市:國立編譯館。
    國立編譯館(1997):國民小學自然科學第六冊(三上)改編本七版。台北市:國立編譯館。
    張瓊,于祺明,劉文君(1994):科學理論的建構。臺北:淑馨。
    教育部(1999):國民教育九年一貫課程綱要:自然與科技學習領域(草案)。教育部。
    郭金美(1997):小學職前教師類比教學策略的運用研究。嘉義師院學報,11,259-272。
    陳恆迪(1993):國中學生物理概念類比學習之研究。國立彰化師範大學科學教育研究所碩士論文。
    陳啟明、陳瓊森(1992):探究高一學生對直流電路的迷思概念。科學教育,第三期,22-72。
    陳義勳(1994):國小四年級學生電學迷思概念之研究。中華民國第十屆科學教育學術研討會手冊,72。台北:國立台灣師範大學。
    陳龍川(1992):花蓮師院學生簡單直流電路迷思概念類型及其分佈調查。花師數理教育學報,1期,65-80。
    陳瓊森(1993):高一學生直流電路概念結構之研究。彰化師範大學學報,第四期,511-542。
    陳瓊森(1996):類比和模型:電學迷思概念轉變研究。認知與學習專題研究計畫成果與學術研討會結案報告。嘉義市:中正大學認知科學研究中心。
    黃幸美(1995):類比推理思考及其在教學上之應用。教育研究資訊,第三卷第三期,128-142。
    楊文金(1992):在職國小教師對基本電路之概念研究。中華民國第八屆科學教育學術研討會論文彙編,499-518。高雄:國立高雄師範大學。
    葉俊豪、陳瓊森(1995):利用定性與定量測驗來探究高二學生對直流電路的知識結構。科學教育,第六期,156-178.
    蕭碧茹(1996):圖形類比對國中生理化學習的影響。國立高雄師範大學科學教育研究所碩士論文。(未出版)
    陳惠江、許遠光、黃國輝、鄺兆榮(1994):香港新綜合科學,雅集出版社。
    二、英文部分
    Arnold, M. & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9, 553-563.
    Arnold, M. & Millar, R. (1988). Teaching about electric circuits: a constructivist approach. School Science Review, 70(251): 149-151.
    Black, D. E., & Solomon, J.(1987). Can pupils use taught analogies for electric current? School Science Review, 69, 249-254.
    Brewer, W. F. (1987). Schemas versus mental models in human memory. In P. Mirris (Ed.), Modeling Cognition, 187-197. Chichestster: Wiley.
    Brown, D. E. (1993). Refocusing core intuitions: A concretizing role for analogy in conceptual change. Journal of Research in Science Teaching, 30(10), 1273-1290.
    Brown, D. E.(1992). Using examples and analogies to remediate misconceptions in physics: factors influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17-34.
    Burstein, M. H. (1986). Concept formation by incremental analogical reasoning and debugging. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach Vol.2, 351-370. Los Altos, CA: Kaufmann.
    Burstein, M. H. (1988). Incremental learning from multiple Analogies. In A. Prieditis (Ed.), ANALOGICA: The First Workshop on An Analogical Reasoning, 37-62. Boston: Pitman.
    Butts, W. (1985). Children’s understanding of electric current in three countries. Research in Science Education, 15: 127-130.
    Caravitam S., & Halldén, O. (1994). Re-framing the problem of conceptual change [special issue]. Learning and Instruction, 4, 89-111.
    Carey, S. (1985). Conceptual change in childhood. Cambridge: MIT Press.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota Press.
    Chi, M. T. H. (1993). Barriers to conceptual change in science concepts: A theoretical conjecture. Paper presented at American Educational Research Association.
    Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative Thought: An Investigation of Conceptual structures and Process, 209-234. Washington, DC: American Psychological Association.
    Chi, M. T. H. (1998). Personal communication.
    Chi, M. T. H., Bassok, M., Lewis, M. W., Reiman, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts [special issue]. Learning and Instruction, 4, 27-43.
    Clement, J. (1983). Use of analogies and spatial transformations by experts in solving mathematics problems. Proceedings of the Fifth Annual Meeting of the International Group for the Psychology of Mathematics Education, North American Chapter, 5, 101-111.
    Clement, J. (1993). Using bridging analogies and anchoring instruction to deal with students preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1251.
    Closset, J. L. (1983). Sequential reasoning in electricity. In Research on Physics Education, Proceedings of the First International Workshop, 23 June-13 July, La Londe les Maures, France, Editions du Centre National de la Recherche Scientifique, Paris (1984), 313-319.
    Cohen, R. (1984). Causal relations in electric circuits: students. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 107-113.
    Cohen, R., Eylon, B. & Ganiel, U. (1983). Potential difference and current in simple electric circuits: a study of students’ concepts. American Journal of Physics, 51(5), 407-412.
    Collins, A. (1985). Component models of physical systems. Proceedings of the Seventh Annual conference of the Cognitive Science Society, 80-89.
    Collins, A., & Gentner, D. (1987). How People Construct Mental Models. In D. Holland & Quinn (Eds.), Cultural Models in Language and Thought, 243-265. Cambridge University Press.
    Conver, W. J. (1999). Wiley series in probability and statistics: Applied probability and statistics section (third edition). New York: Willy.
    Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change? Science Education, 78(6), 601-614.
    Driver, R., Sauires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making Sense of Secondary Science: Research into Children's Ideas. London and New York: Routledge.
    Duit, R. (1984). The meaning of current and voltage in everyday language and its consequences for the physical concepts of the electric circuit. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 205-214.
    Duit, R.(1991). On the role of analogies and metaphors in learning science.
    Dunbar, K. (1995). How scientists really reason: scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson, (Eds.), The Natural of Insight. Cambrudge. MA: MIT Press, 365-395.
    Duncker, K. (1945). On problem solving. Psychological Monographs, 58(Whole No. 270).
    Dupin, J. J. & Johsua, S. (1984). Teaching electricity: interactive evolution of representations, models and experiments in a class situation. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 331-341.
    Dupin, J. J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of Research in Science Teaching, 24(9), 791-806.
    Dupin, J. J., & Johsua, S. (1989). Analogies and “modeling analogies” in teaching: some examples in basic electricity,. Science Education, 73(2), 207-224.
    Dykstra, D. (1992). Studying conceptual change: Constructing new understandings. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in Physics learning: Theoretical issues and empirical studies. Kiel, Germany: Institute of Science Education, 40-58.
    Ferrari, M., & Chi, M. T. H. (1998). The nature of naïve explanations of natural selection. International Journal of Science Education, 20(10), 1231-1256.
    Flick, L. (1991). Where concepts meet percepts: Stimulating analogical thought in children. Science Education, 75(2), 215-230.
    Gauld, C. F. (1985). Teaching about electric circuits or meters, models and memory. LISP Working Paper 209, Science Education Research Unit, University of Waikato, Hamilton, New Zealand.
    Genter, D. (1986). Evidence for a structure-mapping theory of analogy and metaphor. Urbana: University of Illinois.
    Gentner, D. & Gentner, D. (1983). Flowing waters or teeming crowds: Mental models of electricity. In Gentner, D. Stevens, A. L. (Eds.), Mental models. New Jersey and London: Lawrence Erlbaum.
    Gentner, D. & Jeziorski, M. (1990). Historical shifts in the use of analogy in science. Reports for Office of Educational Research and Improvement (Ed), Washington, DC.; Office of Naval Research, Arlington, va. ED318987.
    Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. London: Cambridge University Press.
    Gentner, D. (1999). Analogy. In R. A. Wilson & F. C. Keil(1999). The MIT Encyclopedia of the Cognitive Science, 17-20. The MIT Press, Cambridge, MA.
    Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B., Wolff, P., & Forbus, K. D. (1997). Analogical reasoning and conceptual change: A case study of Johannes Kepler. The Journal of the Learning Science, 6(1), 3-40.
    Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
    Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1-38.
    Glynn S. M. (1989). The teaching with analogies model: Explaining concepts in expository texts. In K. D. Muth (Ed.), Children’s comprehension of narrative and expository text: Research into practice. Neward, DE: International Reading Association, 185-204.
    Glynn, S. M. (1991). The Psychology of Learning Science. In S. M. Glynn, R. H. Yeany, & B. K. Britton. (Eds.), Mahwah, New Jersey: Lawence Erlbaum Associates.
    Glynn, S. M. (1996). Effects of instruction to generate analogies on students' recall of science text. Reading Research Report , 60. ED396259
    Glynn, S. M., Britton, B. K., Semrud-Clikeman, M., & Muth, K. D. (1989). Analogical reasoning and problem solving in the textbooks. In J. A. Glocer, R. R. Ronning, & C. R. Reynolds (Eds.), Handbook of Creativity: Assessment, Theory, and Research, 383-389. New York: Plenum.
    Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In M. Shawn, S. M. Glynn, Reinders, & R. Duit (Eds.), Learning Science in School: Research Reforming Practice. Mahwah, New Jersey: Lawence Erlbaum Associates.
    Gott, R. (1984). Electricity at Age 15: Science Report for Teachers, No 7. Assessment of Performance Unit, Department of Education and Science, HMSO London.
    Harrison A. G. & Treagust D. F. (1993). Teaching with analogy : A case study in grade-10 optics. Journal of Research in Science Teaching. 30(10), 1291-1307.
    Härtel, H. (1982). The electric circuit as a system: A new approach. European Joural of Science Education, 4(1), 45-55.
    Härtel, H. (1984). The electric circuits as a system. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 343-352.
    Heller, P. M., & Finley, F. N.(1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3), 259-275.
    Hewson, P., & Hewson, M. (1992). The status of student conceptions. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Kiel, Germany: Institute of Science Education, 59-73.
    Holyoak, D. J., & Koh, K. (1987). Surface and Structural Similarity in Analogical Transfer. Memory & Cognition, 15(4), 332-340.
    Holyoak, K. J., Novick, L. R., & Melz, E. R. (1994). Component processes in analogical transfer: Mapping, pattern completion and adaptation. In K. J. Holyoak & J. A. Barnden (Eds.), Advances in Connectionist and Neural Computation Theory: Vol 2. Analogical Connections, 113-180. Norwood, NJ: Ablex.
    Holyoak, K., & Thagard, P. (1995a). The analogical child. Mental Leaps: Analogy in Creative Thought. London: MIT.
    Holyoak, K., & Thagard, P. (1995b). The Construction of similarity. Mental Leaps: Analogy in Creative Thought. London: MIT.
    Homa, D., & Vosburgh, R. (1976). Category breadth and the abstraction of prototypical information. Internal of Experimental Psychology: Human : Learning and Memory, 2, 322-330.
    Johnson-Laird P. N. (1989). Mental models. In M. I. Posner (Ed.), From foundation of cognitive science. Cambridge, MA: The MIT Press.
    Johsua, S., & Dupin, J. (1987). Taking into account student conceptions in instructional strategy: An example in physics. Cognition and Instruction, 4, 117-135.
    Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on analogical mapping: A comparison of three models. Cognitive Science, 18, 387-438.
    King, A. (1994). Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. American Educational Research Journal, 31(2), 338-368.
    Kuhn, T. S. (1970). The Structure of Scientific Revolution (2nd edition). Chicago: University of Chicago Press.
    Lawson, D. I., & Lawson, A. E. (1993). Neural principles of memory and a neural theory of analogical insight. Journal of Research in Science Teaching, 30(10), 1327-1348.
    Licht, P. (1985). Concept development in electricity: a strategy and some preliminary results. Paper prepared for the International Symposium on Physics Teaching organised by the Université Libre de Bruxelles/ Vrije Universiteit Brussel, 11-13 November.
    Magnusson, S. J., Boyle, R. A., Templin, M. (1997). Dynamic science assessment: A new approach for investigating conceptual change. The Journal of the Learning Science, 6(1), 91-142.
    Maichle, U. (1981). Representation of knowledge in basic electricity and its use for problem solving. In Jung, W., Pfundt, H. & Rhoneck, C. von (Eds.), Proceedings of the International Workshop on Problems concerning students’ representation of physics and chemistry knowledge, 14-16 September, Pdeagogische Hochschule, Ludwigsburg, 174-193.
    Mayer, R. E.(1993). Thinking, Problem Solving, Cognition. New York.:W. H. Freeman.
    Nersessian, N. J. (1992). How do scientists thinks? Capturing the dynamics of conceptual change in science,. In R. N. Giere (Ed.), Minnesota Studies in the Philosophy of Science (XV): Cognitive Models of Science. The University of Minnesota Press.
    Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models. New Jersey and London: Lawrence Erlbaum.
    Novick, L. R., & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 398-415.
    Osborne, R. & Freyberg, P. (1985). Learning in science: the implications of children’s science. Heinemann, Auckland and London.
    Osborne, R. (1981). Children’s ideas about electric current. New Zealand Science Teacher, 29, 12-19.
    Osborne, R. (1983). Children’s ideas meet scientists’ science. Lab Talk 28(1), 2-7 (Victoria, Australia).
    Osborne, R. (1983). Towards modifying children’s ideas about ideas about electric current. Research in Science & Technological Education, 1(1), 73-82.
    Peterson, M. J., Meagher, R. B., Chait, H. & Gillie, S. (1973). The abstraction and generalization of dot patterns. Cognitive Psychology, 4, 378-398.
    Pintrich, P. R., Marx, R. W., Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-200.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Psillos, D., Koumaras, P. & Tiberghien, A. (1988). Voltage presented as a primary concept on DC circuits. International Journal of Science Education, 10(1), 29-43.
    Rumelhart, D. E. & Norman, D. A. (1981). Analogical processes in learning. In J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition. Hillsdale, N. J. Lawrence Erlbaum Associates, Inc, 335-359.
    Russell, T. J. (1980). Children’s understanding of simple electrical circuits. In T. J. Russell & A. P. C. Sia (Eds.), Science and mathematics concept learning of South East children: Second report on Phase II (pp. 67-91.). Glugar, Malaysia: SEAMEO-RECSAM.
    Schwartz, D. L. (1993). The construction and analogical transfer of symbolic visualizations. Journal of Research in Science Teaching, 30(10). 1309-1325.
    Schwedes, H. (1984). The importance of water circuits in teaching electric circuits. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 319-329.
    Segre, G. & Gagliardi, M. (1984). Models, paradigms and misconceptions in transport processes. Seminar at the University of Naples, Italy.
    Segre, G., & Giani, U. (1987). Analogical reasoning and formalization in transport processes. In J. Novak (Ed.), Proceedings of the 2nd International Seminar Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, NY: Cornell University, vol.1, 420-424.
    Shapiro, M. A. (1985, May). Analogies, visualization and mental processing of science stories. Paper presented to the Information Systems Division of the International Communication Association.
    Sheard, C., & Readence, J. E. (1988). An investigation of the inference and mapping process of the componentail theory of analogical reasoning. Journal of Education Research, 81(6), 347-353.
    Shepardson, D. P., & Moje, D. B. (1994). The nature of fourth graders’ understandings of electric circuits. Science Education, 78(5), 489-514.
    Shipstone, D. (1985). Electricity in simple circuits’. In Driver, R. Guesne, E. & Tiberghien, A. (Eds.), Children’s Ideas in Science. Open University Press, Milton Keynes, 33-51.
    Shipstone, D. M. (1984). A study of children’s understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185-198.
    Slotta, J. D., & Chi, T. H. (1996). Understanding constraint-based process: A precursor to conceptual change in physics. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.
    Slotta, J. D., Chi, M. T. H., & Joran, E. (1995). Assessing students’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373-400.
    Solomon, I (1994). Analogical transfer and “functional fixedness” in the science classroom. Journal of Educational Research, 87(6), 371-377.
    Solomon, J., Black, P., Oldham, V. & Stuart, H. (1985). The pupils’ view of electricity. European Journal of Science Education, 7, 281-294.
    Spelke, S. E. (1991). Physical knowledge in infancy: reflections on Piaget’s theory. In S. Carey and R. Gelman (Eds.), The Epigenesis of Mind: Essays on Biology and Cognition . Hillsdale, NJ: Erlbaum.
    Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning. New York: Cambridge University Press.
    Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching. 28(4), 305-313.
    Sternberg, R. J. (1977). Component process in analogical reasoning. Psychological Review, 84(4), 353-378.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (Eds.), Philosophy of science , cognitive science and educational theory and practice. Albany, NY: SUNY Press.
    Tasker, R., & Osborne, R. (1985). Science teaching and science learning.. Learning in Science. In R. Osborne & P. Freyberg (Eds), 15-27.
    Tenney, Y. J. (1984). What makes analogies accessible: experiments on the water-flow analogy for electricity. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 311-318.
    Thagard, P. (1992a). Analogy, explanation and education. Journal of Research in Science Teaching, 29(6), 537-544.
    Thagard, P. (1992b). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Tiberghien, A. (1983). Critical review of research concerning the meaning of electric circuits for students aged 8 to 20 years. In Research on Physics Education, Proceedings of the First International Workshop, 23 June-13 July, La Londe les Maures, France, Editions du Centre National de la Recherche Scientifique, Paris (1984), 109-123.
    Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. [special issue]. Learning and Instruction, 4, 71-87.
    Treagust, D. F., Harrison, A., Venville, G., & Dagher, Z. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18, 213-229.
    Tyson, L. M., Venville, G. J., Harrison, A. G. & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
    Venville, G. J., & Treagust, D. F. (1996). The role of analogies in promoting conceptual change in biology. Instructional Science, 4, 71-87.
    Von Rhoneck, C. (1981). Students’ conceptions of the electric circuit before physics instruction. In Jung, W., Pfundt, H. & Rhoneck, C. von (Eds.), Proceedings of the International Workshop on Problems concerning students’ representation of physics and chemistry knowledge, 14-16 September, Pdeagogische Hochschule, Ludwigsburg, 194-213.
    Von Rhoneck, C. (1984). The instruction of voltage as an independent variable-the importance of preconceptions, cognitive conflict and operating rules. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 275-286.
    Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning, 413-497. New York: Cambridge University Press.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and Instruction, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
    Webb, M. J. (1985). Analogies and their limitation. School science and mathematics, 85(8), 645-650.
    White, R. T. (1994). Commentary: Conceptual and conceptional change. [special issue]. Learning and Instruction, 4, 117-121.
    Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technology Education, 2, 107-125.
    Zhang, J. (1997). The Nature of external representations in problem solving. Cognitive Science, 21(2), 179-217.

    QR CODE