Basic Search / Detailed Display

Author: 楊忠璇
Yang, Chung-Hsuan
Thesis Title: 幾何知識與推理能力對高年級學童幾何圖形概念改變的影響
The effect of knowledge and reasoning ability on geometric conceptual change for senior elementary children
Advisor: 吳昭容
Wu, Chao-Jung
Degree: 碩士
Master
Department: 教育心理與輔導學系
Department of Educational Psychology and Counseling
Thesis Publication Year: 2013
Academic Year: 101
Language: 中文
Number of pages: 137
Keywords (in Chinese): 長方形概念包含關係幾何知識推理能力反例
Keywords (in English): rectangle concept, inclusion relationship, geometric knowledge, reasoning ability, counter-example
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 175Downloads: 36
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究旨在探討國小五年級學童以反例促使幾何圖形概念改變之結果及其認知歷程,特別關注幾何知識與推理能力各自所扮演的角色,並針對長方形包含正方形的關係進行研究。前導研究以131名三至五年級學童檢驗幾何知識與推理能力之自編測驗的品質,並以11名五年級學童確認實驗流程。正式研究包含概念改變實驗與定義改變實驗,前者目的是改變學童概念低度外延之情形和調整內涵性,後者則是在概念外延性改變之後,更精緻化概念內涵性;前者材料是正例和反例的圖卡,後者則是增加了非例的圖卡。以圈圖題自台北市與新北市五年級學童336名中選出明顯低度外延者為研究對象,再以自編的幾何知識測驗和推理能力測驗篩選出三組學童,分別是「高知識高邏輯組」、「高知識低邏輯組」和「低知識高邏輯組」,有效人數依序為16、17和16名。概念改變實驗的結果,首先,接受反例和概念外延性改變方面,「低知識高邏輯組」人數少於「高知識高邏輯組」,顯示幾何知識較差者,較難接受反例和調整概念外延性。其次,整體而言,有近半數的學童概念內涵性進步,並且近七成的學童可發現必要屬性──四角直角。最後,在共同屬性的歸納上,「高知識高邏輯組」和「高知識低邏輯組」的長方形描述數量多於「低知識高邏輯組」,且「高知識高邏輯組」在推理正方形可歸類為長方形的歷程中,想出較多的幾何性質且多為推理有效的方式,顯示幾何知識和推理能力影響了歸納共同屬性的表現。定義改變實驗的結果是接受實驗處理的學童有四分之一的概念內涵性轉為正確,不過「高知識高邏輯組」概念為精緻化者屬於少數。研究者推測工作記憶的限制是學童無法將概念精緻化的因素。研究者分析學童的概念改變歷程表現,認為幾何知識於幾何圖形概念改變中所扮演的角色是提供學童進行推理時的可用的背景知識,至於學童是否可善加運用背景知識,最後獲得正確概念則需仰賴推理能力的程度。

    This study is to understand the results and the cognitive processes of geometric conceptual change from the 5th grade elementary pupils who face counter-examples of quadrilaterals, especially to focus on the roles that geometric knowledge and reasoning ability play in the conceptual change. The inclusion relationship, square included in rectangle, was discussed further. 131 grade 3rd to 5th elementary pupils were selected for the pilot study to examine two self - designed tests of the geometric knowledge and reasoning ability. In addition, grade 5th elementary pupils were selected simultaneously to confirm the accuracy of the experimental procedure. The formal study contained two experiments: the conceptual change experiment and the definition-changed experiment. The former aimed to change the children’s performance of under-extension and to adjust the performance of conceptual intension; the latter aimed to refine the performance of conceptual intension when children were able to change the performance of performance of conceptual extension. As far as materials were concerned, positive instances and counter-examples were involved in the former; except for the materials mentioned above, the negative instances were added in the latter. The subjects were divided via the 2(geometric knowledge)*2(reasoning ability) way; then, three groups were formed, exclusive of the group with those had the worst geometric knowledge and reasoning ability. The valid samples for each group were 16, 17 and 16. All the subjects were with under-extension. The results of the conceptual change experiments were addressed as follows. First, the “worse geometric knowledge and better reasoning ability” group performed significantly better than the “better geometric knowledge and reasoning ability” group in accepting the counterexample and changing the performance of conceptual extension. It reveals that the poor geometric knowledge subjects have, the more difficult is for them to accept the counter-example and adjustment conceptual extension. Secondly, nearly half of the children are progressive in understanding the conceptual intension, and nearly 70% of the subjects found that the necessary attribute is “four angles are right angles.” Finally, the performance of inducting common attributes for positive instances and counter-examples of all subjects are shown as follows. the “better geometric knowledge and reasoning ability” group and the “better geometric knowledge and worse reasoning ability” group described more rectangular properties than the “worse geometric knowledge and better reasoning ability” group. Moreover, the “better geometric knowledge and reasoning ability” group could come up with more geometric properties, which can be regarded as effective reasoning concerning why square can be included in rectangular. It demonstrates that the performance of inducting common attributes is affected through the geometric knowledge and the reasoning ability. The result of the definition-changed experiment was that quarter of subjects turned their wrong conceptual intension correct after the experimental treatment. However, very few of the “better geometric knowledge and reasoning ability” group were able to refine the performance of conceptual intension, so the researcher speculated working memory limits subjects to refine the performance of conceptual intension. The researcher found that the role of the geometric knowledge in geometry conceptual change is to provide background knowledge for reasoning. Eventually, the school children rely on the reasoning ability to manipulate background knowledge and obtain the correct concepts.

    目次 誌謝詞i 中文摘要iii 英文摘要v 目次vii 表次ix 圖次xi 第一章 緒論1 第一節 研究動機1 第二節 名詞釋義4 第二章 文獻探討7 第一節 幾何概念的認知理論與相關研究7 第二節 概念改變的理論與相關研究15 第三節 四邊形包含關係的幾何知識27 第四節 概念階層關係與推理能力32 第三章 前導研究41 第一節 研究對象41 第二節 研究工具41 第三節 研究程序46 第四節 結果與討論52 第四章 正式研究61 第一節 研究對象62 第二節 研究工具62 第三節 研究程序63 第四節 結果與討論67 第五章 結論與建議79 參考文獻89 中文部分89 英文部分92 附錄97 附錄一 前導研究──圈圖題97 附錄二 前導研究──數學概念評量表99 附錄三 前導研究──動動腦103 附錄四 前導研究──圖形遊戲卡113 附錄五 前導研究──訪談圖卡115 附錄六 前導研究團體施測指導語117 附錄七 數學概念評量表項目分析119 附錄八 動動腦項目分析122 附錄九 正式研究──數學概念評量125 附錄十 正式研究──動動腦129 附錄十一 正式研究團體施測指導語134 附錄十二 幾何描述方式136

    凡異(1987)。簡明數學辭典。新竹:凡異。
    左台益、梁勇能(2001)。國二學生空間能力與Van Hiele幾何思考層次相關性研究。師大學報,科學教育類,47(1),55-69。
    石宛臻(2004)。反例對國小五年級學童四邊形幾何概念調整的影響(未出版之碩士論文)。國立台北師範學院,臺北市。
    何敏華(2005)。創意教學活動「四邊形的獵捕」-包含關係的推理。科學教育月刊,282,41-55。
    何森豪(2001)。van Hiele幾何發展水準之量化模式—以國小中高年級學生在四邊形概念之表現為例。測驗統計年刊,9,81-129。
    吳昭容(2004)。國中小學生平面幾何圖形的概念結構與概念調整歷程之探討。國科會專題研究計畫成果報告(計畫編號NSC-92-2521-S-152-004),未出版。
    李俊儀、袁媛(2004)。資訊科技融入數學教學模組之開發與研究—以國中平面幾何基礎課程教學為例。花蓮師範學院學報,19,119-142。
    林軍治(1992)。兒童幾何思考之VAN HIELE 水準分析研究─ VHL, 城鄉, 年級, 性別, 認知型式與幾何概念理解及錯誤概念之關係。臺中巿: 書恒。
    林達森(2011)。融入概念構圖之學習環教學模式在國中生態系統概念教學之實驗研究。嘉南學報,37,338-350。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    南一(2009)。國小數學教師手冊第十一冊。台北:南一。
    南一(2012)。國小數學教師手冊第八冊。台北:南一。
    徐偉民、林美如(2009)。台灣、中國與香港國小數學教科書幾何教材之內容分析。彰化師大教育學報,16,49-75。
    袁媛、楊子賢(2012)。動態幾何軟體融入平行四邊形教學模式成效之探討。科學教育研究與發展季刊,64,77-104。
    張世強、洪碧霞(2010)。認知成份依據的電腦化圖形推理測驗發展。數位學習科技期刊,2(2),78-92。
    張春興、林清山(1989)。教育心理學。臺北市:東華。
    張炳煌(2003)。國小四年級學童四邊形概念診斷教學研究(未出版之碩士論文)。國立台北師範學院,臺北市。
    張英傑(2001)。兒童幾何形體概念之初步探究。國立台北師範學院學報,14,491-528。
    張英傑、陳創義(2003)。九年一貫數學學習領域綱要諮詢意見――幾何篇。教育部九年一貫數學學習領域綱要諮詢意見小組。
    教育部(2009)。國民中小學九年一貫課程綱要數學學習領域修正草案對照表。取自國民教育社群網:取自http://www.edu.tw/eje/content.aspx?site_content_sn=15326,2011年12月1日。
    教育部(2011)。國小數學教師手冊第三冊。台北:教育部。
    莊月嬌、張英傑(2006)。九年一貫課程小學幾何教材內容與份量之分析。國立台北教育大學學報,19(1),33-66。
    許育彰(2012)。三階段學習環在數學領域之教學應用--以圓周率為例。科學教育月刊,346,28-33。
    許歆宜(2005)。國小高年級學童面對幾何圖形反例的概念改變方式(未出版之碩士論文)。國立台北師範學院,臺北市。
    許榮富、楊文金、洪振方(1990)。學習環的理論基礎及其內涵分析──物理概念教學理念的新構思。物理會刊,12(5),375-398。
    陳啟明、陳瓊森(1992)。探究高一學生對直流電路的迷思概念。彰師科學教育,3,22-72。
    陳晚蓁、楊德清(2002)。國一新生數學迷失概念分析。九年一貫數學領域課程基礎研習手冊。臺北市:教育部。
    程小危(1992)。學前到學齡階段認知發展歷程,蔡幸玲主編,發展心理學(p. 171-206)。臺北市:心理。
    部編本(2011)。國中第十六冊。取自九年一貫部編教科書網站:http://mathtext.project.edu.tw/,2011年12月1日。
    黃幸美(2010)。美國當代小學幾何課程發展及其對台灣幾何教學之啟示。教育資料集刊,45,233-269。
    劉秋木(1996)。國小數學科教學硏究。臺北市:五南。
    盧秀琴、黃麗燕(2007)。國中「細胞課程」概念改變教學之發展研究。科學教育學刊,15( 3),295 – 316。
    盧銘法(1996)。國小中高年級學生幾何概念之分析研究:以Van hiele幾何思考水準與試題關聯結構分析為探討基礎(未出版之碩士論文)。國立台中師範學院,臺中市。
    翰林(2009)。國小數學教師手冊第九冊。台北:翰林。
    翰林(2009)。國小數學教師手冊第十一冊。台北:翰林。
    翰林(2012)。國小數學教師手冊第八冊。台北:翰林。
    謝金助、張英傑(2003年12月)。運用動態幾何軟體之國小數學診斷教學探究:以四邊形為例。「中華民國第十九屆科學教育學術研討會」發表之論文,國立台灣師範大學科學教育研究所。
    謝貞秀、張英傑(2003)。國小三四年級平面圖形概念之探究。國立台北師範學院學報,16(2),97-134 。
    蘇育男、徐順益(2009)。融入多面向架構之5E教學模式對八年級學生熱學概念改變與學習動機之研究。數理學科教學知能,1,45-63。
    西文部分
    Balacheff, N. (1991) . Treatment of refutation: Aspects of the complexity of a constructivist approach to mathematics learning. In von Glasersfeld, E. (Ed.), Radical Constructivism in Mathematics Education, (pp.89-110). Netherlands: Kluwer Academic.
    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp. 437-442). New York: Macmillan.
    De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics, 14(1), 11.
    Dogru-Atay, P., & Tekkaya, C. (2008). Promoting Students' Learning in Genetics With the Learning Cycle. Journal of Experimental Education,76(3), 259-280.
    Donaldson, M.(1996)。兒童心智 : 從認知發展看教與學的困境(漢菊德、陳正乾譯)。臺北市:遠流。(原著出版年:1978)
    Driver, R., Guesne, E., & Tiberghien, A. (1993). Some features of children’s ideas and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghien (Ed.), Children’s ideas in science (pp. 193-201). Buckingham: Open University Press.
    Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688. doi: 10.1080/09500690305016
    Erez, M., & Yerushalmy, M. (2006). “If You Can Turn a Rectangle into a Square, You Can Turn a Square into a Rectangle ...” Young Students Experience the Dragging Tool. International Journal of Computers for Mathematical Learning, 11(3), 271-299. doi: 10.1007/s10758-006-9106-7
    Fujita, T. (2012). Learners’ level of understanding of the inclusion relations of quadrilaterals and prototype phenomenon. The Journal of Mathematical Behavior, 31(1), 60-72. doi: http://dx.doi.org/10.1016/j.jmathb.2011.08.003
    Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: towards a theoretical framing. Research in Mathematics Education, 9(1), 3-20. doi: 10.1080/14794800008520167
    Glynn, S. M. & Yeany, R. H. & Britton, B. K. (1996)。科學學習心理學。臺北市:心理。(原著出版年:1991)
    Goswami, U.(2003)。兒童認知(羅雅芬譯)。臺北市:心理。(原著出版年:1997)
    Hashweh, M. (1988). Descriptive studies of students' conceptions in science. Journal of Research in Science Teaching, 25(2), 121-134. doi: 10.1002/tea.3660250204
    Hashweh, M. Z. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8(3), 229-249. doi: 10.1080/0140528860080301
    Karplus, R., Formisano, M., & Paulsen, A.(1979). Proportional reasoning and control of variables in seven countries. In J. Loch-head & J. Clement (Ed.), Cognitive process instruction: Research on teaching thinking skills (pp. 47-103). Philadelphia, PA: Franklin Institute Press.
    Klahr, D., & Dunbar, K. (1988). Dual search space during scientific reasoning. Cognitive Science, 12, 1-48.
    Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-689. doi: 10.1037/0033-295x.96.4.674
    Lakatos, I. (1976). Proofs and refutations: The logical of mathematical discovery. Cambridge: Great Britain University Printing House.
    Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. Monographs of the National Association for Research in Science Teaching, 1, 1-57.
    Leung, I. C. (2008). Teaching and learning of inclusive and transitive properties among quadrilaterals by deductive reasoning with the aid of Smart Board. ZDM─The International Journal on Mathematics Education, 40(6), 1007-1021. doi: 10.1007/s11858-008-0159-z
    Markman, E. M., Horton, M. S., & McLanahan, A. G. (1980). Classes and collections: Principles of organization in the learning of hierarchical relations. Cognition, 8(3), 227-241. doi: http://dx.doi.org/10.1016/0010-0277(80)90006-2
    Markman, E.M. (1989). Categorization and Naming in Children. Cambridge, London: The MIT Press.
    Matsuo, N.,& Silfverberg, H. (2008, July). Similarities and differences between Japanese and Finnish 6th and 8th graders' ways to interpret and apply the definitions of geometric concepts. ICME, the International Congress on Mathematical Education. Monterrey, Mexico.
    Miller P. H.(2008)發展心理學理論 : 從過去到現在(李玉琇、蔣文祁譯)。臺北市:學富文化。(原著出版年:2002)
    Minda, J. P., & Miles, S. J. (2010). The Influence of Verbal and Nonverbal Processing on Category Learning. In H. R. Brian (Ed.), Psychology of Learning and Motivation (Vol. 52, pp. 117-162): Academic Press.
    Minda, J. P., Desroches, A. S., & Church, B. A. (2008). Learning rule-described and non-rule-described categories: A comparison of children and adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1518-1533. doi: 10.1037/a0013355
    Murphy, P. K., & Alexander, P. A. (2008). The role of knowledge, beliefs, and interest in the conceptual change process: A synthesis and meta-analysis of the research. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change, (pp. 583-617). New York, NY: Routledge
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
    Nickson, M.(2004)。數學的學習與教學:六歲到十八歲(詹勳國、李震甌、莊蕙元、戴政吉、侯美玲譯)。臺北市:心理。(原著出版年:2000)
    Peled, I., & Zaslavsky, O. (1997). Counter-examples that (only) prove and counter-examples that (also) explain. Focus on Learning Problems in Mathematics, 19(3), 49-61.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227. doi: 10.1002/sce.3730660207
    Rosser, R. A. (1994). Cognitive development: psychological and biological perspectives: Allyn and Bacon.
    Smith, C. L. (1979). Children's understanding of natural language hierarchies. Journal of Experimental Child Psychology, 27(3), 437-458.
    Sternberg, R. J.(2005)。認知心理學(第三版)(李玉琇、蔣文祁譯)。臺北市:湯姆生。(原著出版年:2003)
    Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M., & Cheng, Y. H. (2012). Cognitive Development of Proof. In G. Hanna & M. de Villiers (Eds.), Proof and Proving in Mathematics Education (Vol. 15, pp. 13-49): Springer Netherlands.
    Usiskin, Z. P. (1982). van Hiele levels and achievement in secondary school geometry. Chicago, IL:University of Chicago, Department of Education.
    Van De Walle, J. A.(2005)。中小學數學科教材教法(張英傑、周菊美譯)。臺北市:五南。(原著出版年:2001)

    下載圖示
    QR CODE