簡易檢索 / 詳目顯示

研究生: 翁子涵
Weng, Tz-Han
論文名稱: VR應用對創意動機與創意表現的影響——腦波的研究
The Influence of VR Applications on Creative Motivation and Creative Performance — A Study of Brainwaves
指導教授: 張玉山
Chang, Yu-Shan
口試委員: 張玉山
Chang, Yu-Shan
吳清基
Wu, Ching-Ji
張明文
Chang, Ming-Wen
黃淳亮
Huang, Chun-Liang
口試日期: 2024/06/19
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 160
中文關鍵詞: VR創意動機創意表現創意歷程創意結果腦波
英文關鍵詞: VR, Creative motivation, Creative performance, Creative process, Creative products, Brainwaves
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400776
論文種類: 學術論文
相關次數: 點閱:61下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 元宇宙作為未來教育的新趨勢,重新定義教育空間及教學模式,虛擬實境應用亦包含其中。而創造力研究中,藉由腦波探討學習者的創意表現及創意動機,則有助於了解創造力的內在歷程。本研究為探討 VR 應用對創意動機、創意表現及腦波變化之影響。研究對象為某國立大學 62 名學生,分為實驗組(24人)與對照組(38人)。實驗組使用 VR 應用於教學,對照組接受講述式教學配合多媒體教材。採不等組前後測準實驗設計。以「機關設計」為教學主題,研究工具包括 HTC VIVE 和 Gadgeteer 教學軟體,腦波測量則使用 MindWave Mobile 2,並以「創意動機量表」、「創意歷程評量表」、「創意結果評量表」和腦波數據APP來蒐集數據。後進行單因子共變數分析、平均數和獨立樣本 t 檢定,以檢驗 VR 應用對創意動機、創意表現及腦波變化之影響。研究結果如下:(1)VR應用對之創意動機具有顯著正向影響;(2)VR應用對之創意表現(「創意歷程」及「創意結果」)具有顯著正向影響;(3)VR應用對部分創意歷程腦波變化具有顯著正向影響。最後依據研究之結果,再提出可充分運用虛擬實境之特性支持創意的發展、強化結果階段之教學以促進 Alpha 波等建議,且未來可探討 VR 應用於不同學習階段、比較不同新興科技工具,以及深入分析其他種類腦波在創意歷程中的變化。

    The Metaverse, as an emerging trend in future education, is redefining educational spaces and instructional models, with Virtual Reality (VR) applications playing a central role in this shift. In the field of creativity research, analyzing learners’ creative performance and motivation through brainwaves offers valuable insights into the intrinsic processes of creativity. This study examines the effects of VR applications on creative motivation, creative performance, and brainwave variations. The sample comprised 62 students from a national university, divided into an experimental group (24 students) and a control group (38 students). The experimental group engaged in VR-based instruction, while the control group received traditional lecture-based teaching supplemented with multimedia materials. A quasi-experimental design with pre- and post-tests for unequal groups was utilized. The course theme was "mechanism design," using the HTC VIVE and Gadgeteer teaching software. Brainwave measurements were conducted using MindWave Mobile 2, and data were collected through the Creative Motivation Scale, Creative Process Assessment, Creative Products Assessment, and a brainwave data app. Statistical methods including one-way ANCOVA, mean analysis, and independent sample t-tests were employed to assess the impacts of VR on creative motivation, performance, and brainwave patterns. The findings revealed: (1) VR applications significantly enhance creative motivation; (2) VR applications significantly improve creative performance, encompassing both creative process and creative outcomes; (3) VR applications significantly affect certain brainwave patterns during the creative process. Recommendations are made to fully utilize the unique features of virtual reality to foster creative development, to enhance teaching during the outcome phase to promote Alpha waves, and to explore VR applications in various learning stages, compare different emerging technological tools, and conduct an in-depth analysis of other brainwave patterns during the creative process.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 7 第三節 名詞解釋8 第四節 研究方法與步驟 9 第五節 研究範圍與限制 12 第二章 文獻探討 15 第一節 虛擬實境之意涵、特性以及相關研究 15 第二節 創意動機之意涵、評量方式以及相關研究 23 第三節 創意表現之意涵、評量方式以及相關研究 32 第四節 腦波之意涵、測量以及相關研究 39 第三章 研究設計與實施 47 第一節 研究架構 47 第二節 研究對象 47 第三節 研究設計 48 第四節 研究工具 49 第五節 研究實施 66 第六節 資料處理與分析 69 第七節 研究倫理 71 第四章 研究結果分析與討論 73 第一節 VR 應用對創意動機之影響 73 第二節 VR 應用對創意表現之影響 78 第三節 VR 應用對創意歷程腦波變化之影響 89 第四節 綜合討論 92 第五章 結論與建議 103 第一節 結論 103 第二節 建議 105 參考文獻 109 附 錄 147

    IBM(2019)。透過無線通訊技術的演進,來探討5G將所帶來的產業發展。https://www.ibm.com/downloads/cas/OPYADDBK
    NeuroSky(2021)。NeuroSky MindWave移動用戶指南。https://manuals.plus/zh-TW/%E7%A5%9E%E7%B6%93%E5%A4%A9%E7%A9%BA/NeuroSky-Mindwave%E7%A7%BB%E5%8B%95%E7%94%A8%E6%88%B6%E6%8C%87%E5%8D%97#brainwaves
    上海市教育委員會(2021)。上海市教育數字化轉型實施方案。https://xxzx.shcac.edu.cn/shanghaishijiaoyushuzihuazhuanxingshishifangan2021-2023.pdf
    王衛國、胡今鴻、劉宏(2015)。國外高校虛擬仿真實驗教學現狀與發展。實驗室研究與探索,34(5),214-219。
    巫博瀚、賴英娟(2007)。學科價值理論-概念分析與理論應用。國教新知,54(1),38-47。https://doi.org/10.6701%2fTEEJ.200703_54(1).0005
    李欣潔(2022)。腦機介面發展現況與上市管理。當代醫藥法規月刊,136。https://www.cde.org.tw/Content/Files/Knowledge/2022%20(%e7%ac%ac136%e6%9c%9f)%20%e6%b3%95%e8%a6%8f%e8%ab%96%e6%96%87_%e8%85%a6%e6%a9%9f%e4%bb%8b%e9%9d%a2%e7%99%bc%e5%b1%95%e7%8f%be%e6%b3%81%e8%88%87%e4%b8%8a%e5%b8%82%e7%ae%a1%e7%90%86_%e9%86%ab%e7%99%82%e5%99%a8%e6%9d%90%e7%b5%84_%e6%9d%8e%e6%ac%a3%e6%bd%94.pdf
    林幸台、王木榮(1994)。威廉斯創造力測驗指導手冊。心理。
    邱皓政(2019)。量化研究與統計分析: SPSS 與 R 資料分析範例解析。五南圖書出版股份有限公司。
    洪素蘋、林珊如(2003)。「學生創意思考內、外在動機」─量表編製與因素效度之檢証。中國測驗學會年會,臺北市,臺灣。
    徐新逸、吳芳瑜(2010)。Second Life在大學虛擬校園之應用。教育研究月刊,193,99-112。
    徐聖修(2013)。腦機介面(Brain-Computer Interface)專題(上)。The Investigator Taiwan 臺灣生物科學研發策進社群。https://investigator.tw/1226/%E8%85%A6%E6%A9%9F%E4%BB%8B%E9%9D%A2-brain-computer-interface-%E5%B0%88%E9%A1%8C-%E4%B8%8A/#_ENREF_10
    國教署(2016年5月13日)。2016虛擬實境元年「VR行動體驗車」開進校園。教育部全球資訊網。https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=E9AA0624E8232F72
    張玉山(2003)。虛擬團隊之創造力研究-以師院勞作課程為例﹝未出版之博士論文﹞。國立臺灣師範大學工業科技教育研究所。
    張玉山(2013)。雲端運算教學應用對不同認知取向大學生的設計創意歷程之影響。行政院國家科學委員會專題研究報告。
    張玉山、陳思貽(2013)。雲端行動學習對學生創意表現之影響。臺灣工程教育與管理學會,中華民國工業科技教育學會,國立台灣師範大學科技應用與人力資源發展學系聯合舉辦之第二屆工程教育學術研討會,臺北市,臺灣。
    張玉佩(2008)。動機對創造思考產生的影響:內、外在動機的再議。國小特殊教育,45,55-67。 https://speccen.utaipei.edu.tw/var/file/64/1064/img/1771/884301200.pdf
    張春興(1989)。張氏心理學辭典。東華書局。
    張劍、郭德俊(2003)。內部動機與外部動機的關係。心理科學進展,11(5),545-550。
    教育部(2003)。5G 智慧共享教學 沉浸式學習體驗 「教育部 112-113 年 5G 新科技學習示範學校計畫」全面啟動。https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=A65C46E37F430ED3
    教育部(2015a)。青年發展政策綱領(核定本)。https://youthadvisory.yda.gov.tw/uploads/placegroup/6345055b5d4b2.pdf
    教育部(2015b)。ide@ Taiwan 2020 (創意臺灣)。https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC85NTI4LzFiMjU5OWQyLWZiNDAtNGMyOC1hYjExLWE1NjZhODMzODU1Yy5wZGY%3D&n=57i96KuWLnBkZg%3D%3D&icon=..pdf
    許尚華、莊明振(2005年12月19日)。使用者為中心的產品概念創意方法探討(I)(NSC93-2218-E-009-008)。https://ir.lib.nycu.edu.tw/bitstream/11536/91238/1/932218E009008.pdf
    陳彥智、徐新逸(2004)。模型式虛擬實境技術於中小學美術教育之應用。視聽教育雙月刊,45(4),23-34。
    陳思貽(2014)。雲端行動學習與創意環境對創意表現的影響﹝未出版之碩士論文﹞。國立臺灣師範大學科技應用與人力資源發展學系。
    陸定邦、楊彩玲(2012)。創意表現技法。全華圖書。
    黃宥晟(2015)。VR開發實戰分享會。財團法人資訊工業策進會。
    新北市政府教育局(2022年5月4日)。全亞洲首創元宇宙教育 侯友宜:運用虛擬實境穿透城鄉差距。新北市政府。https://www.ntpc.gov.tw/ch/home.jsp?id=e8ca970cde5c00e1&dataserno=747a26a309f8aaeccbbed13ca01f656e
    葉玉珠、吳靜吉、鄭英耀(2000)。影響科技與資訊產業人員創意發展的因素之量表編製。師大學報:科學教育類,45(2),39-63。https://doi.org/10.6300/JNTNU.2000.45(2).03
    鄒昀倢(2016年8月16日)。作夥打群架才有力量,台灣發展虛擬實境王國第一步:建立VR生態圈。TechOrange科技橘報。https://buzzorange.com/techorange/2016/08/16/vr-ecosystem/
    臺北市教育局(2022)。臺北市111年度元宇宙教育總體計畫。https://www.doe.gov.taipei/News_Content.aspx?n=B7CDD31145FD5080&sms=06B6662E5FDADA7A&s=EF1FCBF7B9DEA113
    蔡永彬(2012)。何謂腦波?科學人雜誌。https://www.ltedu.com.tw/web/scientific-epaper-content.aspx?KEY=138&ARTICLE=01
    蔡啟通、高泉豐(2004)。動機取向、組織創新氣候與員工創新行為之關係: Amabile動機綜效模型之驗證。管理學報,21(5),571-592。https://doi.org/10.6504%2fJOM.2004.21.05.02
    蕭文龍(2018)。統計分析入門與應用—SPSS 中文版+ SmartPLS3 (PLS-SEM) 第二版,碁峰資訊股份有限公司。
    賴英娟(2006)。以結構方程模式檢驗國中生動機信念與創新支持對創新行為和創意表現之影響。﹝未出版之碩士論文﹞。國立臺灣科技大學。
    賴英娟、巫博瀚(2007)。 動機綜效觀點及其在創意教學上的應用。國立編譯館館刊,35(2),87-94
    鍾智超、鄭博元、羅希哲、黃創業(2021)。STEAM虛擬實境實作 PBL 課程發展與滿意度分析。人文社會科學研究:教育類,15(2),49-74。
    顧荃(2016年9月1日)。VR教元素 表建中等10高中試辦。中央通訊社。https://www.cna.com.tw/news/aloc/201609010208.aspx
    Abhari, M., Abhari, K., Drinkwine, M., & Sloan, J. (2021, November). Extended Reality (XR) Applications in architectural practice: Towards a development framework. In Stephanidis, C., Kurosu, M., Chen, J. Y. C., Fragomeni, G., Streitz, N., Konomi S., Degen, H., & Ntoa S. (Chair), HCI international 2021-late breaking papers: Multimodality, eXtended reality, and artificial intelligence. HCII 2021, Springer. https://doi.org/10.1007/978-3-030-90963-5_15
    Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. https://doi.org/10.3389/fnhum.2013.00246
    Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2020). Predicting response originality through brain activity: An analysis of changes in EEG alpha power during the generation of alternative ideas. NeuroImage, 207, 116385. https://doi.org/10.1016/j.neuroimage.2019.116385
    Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion and engagement. Research in Learning Technology, 26, 2140. https://doi.org/10.25304/rlt.v26.2140
    Amabile, T. M. (1982). Children's artistic creativity: Detrimental effects of competition in a field setting. Personality and Social Psychology Bulletin, 8(3), 573-578. https://doi.org/10.1177/0146167282083027
    Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43(5), 997-1013. https://doi.org/10.1037/0022-3514.43.5.997
    Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357-376. https://doi.org/10.1037/0022-3514.45.2.357
    Amabile, T. M. (1996). Creativity and innovation in organizations. Harvard Business School.
    Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. Routledge. https://doi.org/10.4324/9780429501234
    Amabile, T. M. (1997). Motivating creativity in organizations: On doing what you love and loving what you do. California Management Review, 40(1), 39–58. https://doi.org/10.2307/41165921
    Amabile, T. M., Hennessey, B. A., & Grossman, B. S. (1986). Social influences on creativity: The effects of contracted-for reward. Journal of Personality and Social Psychology, 50(1), 14–23. https://doi.org/10.1037/0022-3514.50.1.14
    Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66(5), 950-967. https://doi.org/10.1037/0022-3514.66.5.950
    Amin, H. U., Ousta, F., Yusoff, M. Z., & Malik, A. S. (2021). Modulation of cortical activity in response to learning and long-term memory retrieval of 2D verses stereoscopic 3D educational contents: Evidence from an EEG study. Computers in Human Behavior, 114, 106526. https://doi.org/10.1016/j.chb.2020.106526
    An, D., Song, Y., & Carr, M. (2016). A comparison of two models of creativity: Divergent thinking and creative expert performance. Personality and Individual Differences, 90, 78-84. https://doi.org/10.1016/j.paid.2015.10.040
    Andersen, S. A. W., Konge, L., & Sørensen, M. S. (2018). The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training. Medical Teacher, 40(7), 684-689. https://doi.org/10.1080/0142159X.2018.1465182
    Archer, L. B. (1964). Systematic method for designers. Council of Industrial Design.
    Auld, L. W., & Pantelidis, V. S. (1994). Exploring virtual reality for classroom use: The virtual reality and education lab at East Carolina University. TechTrends: Linking Research and Practice to Improve Learning, 39(1), 29-31. https://doi.org/10.1007/BF02763872
    Ausburn, L. J., & Ausburn, F. B. (2004). Desktop virtual reality: A powerful new technology for teaching and research in industrial teacher education. Journal of Industrial Teacher Education, 41(4), 1-16.
    Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating learning from non-immersive to immersive media: Using EEG to investigate the effects of environmental embeddedness on reading in virtual reality. Computers & Education, 164. https://doi.org/10.1016/j.compedu.2020.104122
    Baer, J., & Kaufman, J. C. (2008). Gender differences in creativity. The Journal of Creative Behavior, 42(2), 75–105. https://doi.org/10.1002/j.2162-6057.2008.tb01289.x
    Barrett, A. J., Pack, A., & Quaid, E. D. (2021). Understanding learners' acceptance of high-immersion virtual reality systems: Insights from confirmatory and exploratory PLS-SEM analyses. Computers & Education, 169, 104214. https://doi.org/10.1016/j.compedu.2021.104214
    Basadur, M. I. N., Runco, M. A., & Vegaxy, L. A. (2000). Understanding how creative thinking skills, attitudes and behaviors work together: A causal process model. The Journal of Creative Behavior, 34(2), 77-100. https://doi.org/10.1002/j.2162-6057.2000.tb01203.x
    Benedek, M. (2018, August). The neuroscience of creative idea generation. In Kapoula, Z., Volle, E., Renoult, J., & Andreatta, M. (Chair), Exploring transdisciplinarity in art and sciences. Springer. https://doi.org/10.1007/978-3-319-76054-4_2
    Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125-133. https://doi.org/10.1016/j.neuroimage.2013.11.021
    Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv f. Psychiatrie, 87(1), 527-570. https://doi.org/10.1007/BF01797193
    Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products--three novel chairs. Creativity Research Journal, 11(4), 333-346. https://doi.org/10.1207/s15326934crj1104_7
    Bieth, T., Ovando‐Tellez, M., Lopez‐Persem, A., Garcin, B., Hugueville, L., Lehongre, K., Levy R., George, N., & Volle, E. (2024). Time course of EEG power during creative problem‐solving with insight or remote thinking. Human Brain Mapping, 45(1), e26547. https://doi.org/10.1002/hbm.26547
    Bogicevic, V., Seo, S., Kandampully, J. A., Liu, S. Q., & Rudd, N. A. (2019). Virtual reality presence as a preamble of tourism experience: The role of mental imagery. Tourism Management, 74, 55-64. https://doi.org/10.1016/j.tourman.2019.02.009
    Branca, G., Marino, V., & Resciniti, R. (2023). How do consumers evaluate products in virtual reality? A literature review for a research agenda. Spanish Journal of Marketing-ESIC. http://dx.doi.org/10.1108/SJME-07-2022-0153
    Brown, R. T. (1989). Creativity: What are we to measure? In Glover, J. A., Ronning, R. R., & Reynolds, C. R. (Chair), Handbook of creativity. Perspectives on Individual Differences, Springer.
    Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. John Wiley & Sons.
    Butt, A. L., Kardong-Edgren, S., & Ellertson, A. (2018). Using game-based virtual reality with haptics for skill acquisition. Clinical Simulation in Nursing, 16, 25-32. https://doi. org/10.1016/j.ecns.2017.09.010
    Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076. https://doi.org/10.1109/TVCG.2017.2653117
    Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380-390. https://doi.org/10.1016/j.future.2020.07.013
    Cao, J., Zhao, W., & Guo, X. (2021). Utilizing EEG to explore design fixation during creative idea generation. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/6619598
    Chaddad, A., Wu, Y., Kateb, R., & Bouridane, A. (2023). Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques. Sensors, 23(14), 6434. https://doi.org/10.3390/s23146434
    Chang, Y. S. (2013). Student technological creativity using online problem-solving activities. International Journal of Technology and Design Education, 23(3), 803-816. https://doi.org/10.1007/s10798-012-9217-5
    Chang, Y. S. (2019). The mediating role of motivation for creative performance of cloud-based m-learning. Australasian Journal of Educational Technology, 35(4), 35-45. https://doi.org/10.14742/ajet.4418
    Chang, Y. S. (2022). Influence of virtual reality on engineering design creativity. Educational Studies, 48(3), 341-357. https://doi.org/10.1080/03055698.2020.1754767
    Chang, Y. S., Chou, C. H., Chuang, M. J., Li, W. H., & Tsai, I. F. (2020). Effects of virtual reality on creative design performance and creative experiential learning. Interactive Learning Environments, 31(2), 1142–1157. https://doi.org/10.1080/10494820.2020.1821717
    Chang, Y. S., Kao, J. Y., & Wang, Y. Y. (2022). Influences of virtual reality on design creativity and design thinking. Thinking Skills and Creativity, 46, 101127. https://doi.org/10.1016/j.tsc.2022.101127
    Chattha, U. A., Janjua, U. I., Anwar, F., Madni, T. M., Cheema, M. F., & Janjua, S. I. (2020). Motion sickness in virtual reality: An empirical evaluation. IEEE Access, 8, 130486-130499.
    Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108-121. https://doi.org/10.1016/j.compedu.2014.08.015
    Chen, S. J., Chen, C. Q., & Shan, X. F. (2024). The effects of an immersive Virtual-Reality-Based 3D modeling approach on the creativity and Problem-Solving tendency of elementary school students. Sustainability, 16(10), 4092. https://doi.org/10.3390/su16104092
    Chen, Y. C., Chang, Y. S., & Chuang, M. J. (2022). Virtual reality application influences cognitive load-mediated creativity components and creative performance in engineering design. Journal of Computer Assisted Learning, 38(1), 6-18. https://doi.org/10.1111/jcal.12588
    Cheng, K. H., & Tsai, C. C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Computers & Education, 140. https://doi.org/10.1016/j.compedu.2019.103600
    Cheng, K. H., & Tsai, C. C. (2020). Students' motivational beliefs and strategies, perceived immersion and attitudes towards science learning with immersive virtual reality: A partial least squares analysis. British Journal of Educational Technology, 51(6), 2139–2158. https://doi.org/10.1111/bjet.12956
    Cho, R., Zaman, M., Cho, K. T., & Hwang, J. (2024). Analyzing brain activity during learning tasks with EEG and machine learning. arXiv preprint arXiv:2401.10285. https://doi.org/10.48550/arXiv.2401.10285
    Chrysikou, E. G., Wertz, C., Yaden, D. B., Kaufman, S. B., Bacon, D., Wintering, N. A., Jung, R. E., & Newberg, A. B. (2020). Differences in brain morphometry associated with creative performance in high-and average-creative achievers. NeuroImage, 218. https://doi.org/10.1016/j.neuroimage.2020.116921
    Chulvi, V., Mulet, E., Chakrabarti, A., López-Mesa, B., & González-Cruz, C. (2012). Comparison of the degree of creativity in the design outcomes using different design methods. Journal of Engineering Design, 23(4), 241-269. https://doi.org/10.1080/09544828.2011.624501
    Chung, C. C., Tung, C. C., & Lou, S. J. (2020). Research on optimization of VR welding course development with ANP and satisfaction evaluation. Electronics, 9(10). https://doi.org/10.3390/electronics9101673
    Coenen, A., & Zayachkivska, O. (2013). Adolf Beck: A pioneer in electroencephalography in between Richard Caton and Hans Berger. Advances in Cognitive Psychology, 9(4), 216. https://doi.org/10.2478/v10053-008-0148-3
    Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
    Collins, M. A., & Amabile, T. M. (1999). Motivation and Creativity. In Sternberg R. J., Handbook of Creativity. Cambridge University Press. https://doi.org/10.1017/9781316979839.020
    Comenius, J. A. (1986). Didáctica magna. Ediciones Akal.
    Covington, M. V., & Müeller, K. J. (2001). Intrinsic versus extrinsic motivation: An approach/avoidance reformulation. Educational Psychology Review, 13, 157-176. https://doi.org/10.1023/A:1009009219144
    Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391-404. https://doi.org/10.1207/s15326934crj1803_13
    Cruz-Neira, C., Fernández, M., & Portalés, C. (2018). Virtual reality and games. Multimodal Technologies and Interaction, 2(1), 8. https://doi.org/10.3390/mti2010008
    Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row.
    Csikszentmihalyi, M. (2000). Creativity. In Kazdin A. E., Encyclopedia of psychology, Oxford University Press.
    Csikszentmihalyi, M. (2014). Flow and the foundations of positive psychology. Springer.
    Csikszentmihalyi, M. (1997). Flow and the psychology of discovery and invention. Harper Perennial.
    Cummings, J. J., & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272-309. https://doi.org/10.1080/15213269.2015.1015740
    Daghriri, T., Rustam, F., Aljedaani, W., Bashiri, A. H., & Ashraf, I. (2022). Electroencephalogram signals for detecting confused students in online education platforms with probability-based features. Electronics, 11(18), 2855. https://doi.org/10.3390/electronics11182855
    Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105. https://doi.org/10.1037/h0030644
    Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer. https://doi.org/10.1007/978-1-4899-2271-7_3
    Dehn, L. B., Kater, L., Piefke, M., Botsch, M., Driessen, M., & Beblo, T. (2018). Training in a comprehensive everyday-like virtual reality environment compared to computerized cognitive training for patients with depression. Computers in Human Behavior, 79, 40-52. https://doi.org/10.1016/j.chb.2017.10.019
    Dubovi, I., Levy, S. T., & Dagan, E. (2017). Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation. Computers & Education, 113, 16–27. https://doi.org/10.1016/j.compedu.2017.05.009
    Egsgaard, L. L., Wang, L., & Arendt-Nielsen, L. (2009). Volunteers with high versus low alpha EEG have different pain-EEG relationship: A human experimental study. Experimental Brain Research, 193(3), 361–369. https://doi.org/10.1007/s00221-008-1632-1
    Eisenberger, R., & Armeli, S. (1997). Can salient reward increase creative performance without reducing intrinsic creative interest? Journal of Personality and Social Psychology, 72(3), 652–663. https://doi.org/10.1037//0022-3514.72.3.652
    Eisenberger, R., & Cameron, J. (1996). Detrimental effects of reward: Reality or myth? American Psychologist, 51(11), 1153-1166. https://doi.org/10.1037/0003-066X.51.11.1153
    Eisenberger, R., & Selbst, M. (1994). Does reward increase or decrease creativity? Journal of Personality and Social Psychology, 66(6), 1116–1127. https://doi.org/10.1037/0022-3514.66.6.1116
    Eisenberger, R., & Shanock, L. (2003). Rewards, intrinsic motivation, and creativity: A case study of conceptual and methodological isolation. Creativity Research Journal, 15(2-3), 121-130. https://doi.org/10.1080/10400419.2003.9651404
    Eisenberger, R., Haskins, F., & Gambleton, P. (1999). Promised reward and creativity: Effects of prior experience. Journal of Experimental Social Psychology, 35(3), 308-325. https://doi.org/10.1006/jesp.1999.1381
    Elizondo, L. A., Kisselburgh, L. G., Hirleman, E. D., Cipra, R. J., Ramani, K., Yang, M., & Carleton, T. (2010, January 15-18). Understanding innovation in student design projects. International design engineering technical conferences and computers and information in engineering conference. https://doi.org/10.1115/DETC2010-28985
    Esling, P., & Devis, N. (2020). Creativity in the era of artificial intelligence. arXiv preprint arXiv:2008.05959. https://doi.org/10.48550/arXiv.2008.05959
    European Commission. (2020). European innovation scoreboard 2020: EU's innovation is increasing. https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1158
    European Commission. (2021). Coronavirus: EU support to innovators yields promising results one year on. https://eit.europa.eu/news-events/news/coronavirus-eu-support-innovators-yields-promising-results-one-year
    Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111-123. https://doi.org/10.1016/j.neubiorev.2012.12.002
    Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62(1), 46-53. https://doi.org/10.1016/j.ijpsycho.2006.01.001
    Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44(1), 299-310. https://doi.org/10.1016/j.paid.2007.08.010
    Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3), 734-748. https://doi.org/10.1002/hbm.20538
    Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research, and applications. MIT press.
    Fleury, S., Agnes, A., Vanukuru, R., Goumillout, E., Delcombel, N., & Richir, S. (2020). Studying the effects of visual movement on creativity. Thinking Skills and Creativity, 36, 100661. https://doi.org/10.1016/j.tsc.2020.100661
    Fleury, S., Banchard, P., & Richir, S. (2021). A study of the effects of a natural virtual environment on creativity during a product design activity. Thinking Skills and Creativity, 40, 100828. https://doi.org/10.1016/j.tsc.2021.100828
    Frederiksen, J. G., Sørensen, S. M. D., Konge, L., Svendsen, M. B. S., Nobel-Jørgensen, M., Bjerrum, F., & Andersen, S. A. W. (2020). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy, 34, 1244-1252. https://doi.org/10.1007/s00464-019-06887-8
    Fröhlich, T., Alexandrovsky, D., Stabbert, T., Döring, T., & Malaka, R. (2018, October 28-31). VRBox: A virtual reality augmented sandbox for immersive playfulness, creativity and exploration. Proceedings of the 2018 annual symposium on computer-human interaction in play. https://doi.org/10.1145/3242671.3242697
    Gajda, A. (2016). The relationship between school achievement and creativity at different educational stages. Thinking Skills and Creativity, 19, 246-259. https://doi.org/10.1016/j.tsc.2015.12.004
    Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
    Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P., Ferreira, J. L., & Bento, C. (2006). The importance of retrieval in creative design analogies. Knowledge-Based Systems, 19(7), 480-488. https://doi.org/10.1016/j.knosys.2006.04.006
    Gopan. K.G., Reddy, S. A., Rao, M., & Sinha, N. (2022). Analysis of single channel electroencephalographic signals for visual creativity: A pilot study. Biomedical Signal Processing and Control, 75, 103542. https://doi.org/10.1016/j.bspc.2022.103542
    Guan, J. Q., Wang, L. H., Chen, Q., Jin, K., & Hwang, G. J. (2021). Effects of a virtual reality-based pottery making approach on junior high school students’ creativity and learning engagement. Interactive Learning Environments, 31(4), 2016–2032. https://doi.org/10.1080/10494820.2021.1871631
    Guilford, J. P. (1988). Some changes in the structure-of-intellect model. Educational and Psychological Measurement, 48(1), 1-4. https://doi.org/10.1177/001316448804800102
    Hagedorn, L. J., De Rooij, A., & Alimardani, M. (2023, April). Virtual reality and creativity: How do immersive environments stimulate the brain during creative idea generation? 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544549.3585848
    Harter, S., & Jackson, B. K. (1992). Trait vs. nontrait conceptualizations of intrinsic/extrinsic motivational orientation. Motivation and Emotion, 16, 209-230. https://doi.org/10.1007/BF00991652
    Hennessey, B. A. (1989). The effect of extrinsic constraints on children’s creativity while using a computer. Creativity Research Journal, 2(3), 151–168. https://doi.org/10.1080/10400418909534312
    Hennessey, B. A. (2000). Rewards and creativity. In Sansone, C., & Harackiewicz, J. M., Intrinsic and extrinsic motivation: The search for optimal motivation and performance. Academic Press.
    Hennessey, B. A. (2003). The social psychology of creativity. Scandinavian Journal of Educational Research, 47(3), 253-271. https://doi.org/10.1080/00313830308601
    Horn, D., & Salvendy, G. (2006). Consumer‐based assessment of product creativity: A review and reappraisal. Human Factors and Ergonomics in Manufacturing & Service Industries, 16(2), 155-175. https://doi.org/10.1002/hfm.20047
    Horng, J. S., Tsai, C. Y., Yang, T. C., & Liu, C. H. (2016). Exploring the relationship between proactive personality, work environment and employee creativity among tourism and hospitality employees. International Journal of Hospitality Management, 54, 25-34. https://doi.org/10.1016/j.ijhm.2016.01.004
    Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180. https://doi.org/10.1016/j.destud.2008.01.001
    Huang, C. Y., Lou, S. J., Cheng, Y. M., Chung, C. C. (2020). Research on teaching a welding implementation course assisted by sustainable virtual reality technology. Sustainability, 12(23), 10044. https://doi.org/10.3390/su122310044
    Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014
    Huang, K. H., Rupprecht, P., Frank, T., Kawakami, K., Bouwmeester, T., & Friedrich, R. W. (2020). A virtual reality system to analyze neural activity and behavior in adult zebrafish. Nature Methods, 17(3), 343-351. https://doi.org/10.1038/s41592-020-0759-2
    Huang, W., Roscoe, R. D., Johnson-Glenberg, M. C., & Craig, S. D. (2021). Motivation, engagement, and performance across multiple virtual reality sessions and levels of immersion. Journal of Computer Assisted Learning, 37, 745–758. https://doi.org/10.1111/jcal.12520
    Huang, X., Huss, J., North, L., Williams, K., & Boyd-Devine, A. (2023). Cognitive and motivational benefits of a theory-based immersive virtual reality design in science learning. Computers and Education Open, 4, 100124. https://doi.org/10.1016/j.caeo.2023.100124
    Jackson, P. W., & Messick, S. (1965). The person, the product, and the response: conceptual problems in the assessment of creativity. Journal of Personality, 33(3),309-329. https://doi.org/10.1111/j.1467-6494.1965.tb01389.x
    Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28(3), 213-237. https://doi.org/10.1016/S0160-2896(00)00037-4
    Jiang, J., & Fryer, L. K. (2024). The effect of virtual reality learning on students' motivation: A scoping review. Journal of Computer Assisted Learning, 40(1), 360-373. https://doi.org/10.1111/jcal.12588
    Kaimal, G., Carroll-Haskins, K., Berberian, M., Dougherty, A., Carlton, N., & Ramakrishnan, A. (2020). Virtual reality in art therapy: A pilot qualitative study of the novel medium and implications for practice. Art Therapy, 37(1), 16–24. https://doi.org/10.1080/07421656.2019.1659662
    Kang, X., Handayani, D. O. D., Chong, P. P., & Acharya, U. R. (2020). Profiling of pornography addiction among children using EEG signals: A systematic literature review. Computers in Biology and Medicine, 125. https://doi.org/10.1016/j.compbiomed.2020.103970
    Kaplan‐Rakowski, R., & Gruber, A. (2024). An experimental study on reading in high‐immersion virtual reality. British Journal of Educational Technology, 55(2), 541-559. https://doi.org/10.1111/bjet.13392
    Karson, C. N., Coppola, R., & Daniel, D. G. (1988). Alpha frequency in schizophrenia: An association with enlarged cerebral ventricles. The American Journal of Psychiatry, 145(7), 861–864. https://doi.org/10.1176/ajp.145.7.861
    Kiss, G. (2012, June 21-23). Using web conference system during the lessons in higher education. 2012 International conference on information technology based higher education and training (ITHET). IEEE. https://ieeexplore.ieee.org/abstract/document/6246041
    Koestner, R., Ryan, R. M., Bernieri, F., & Holt, K. (1984). Setting limits on children's behavior: The differential effects of controlling vs. informational styles on intrinsic motivation and creativity. Journal of Personality, 52(3), 233-248. https://doi.org/10.1111/j.1467-6494.1984.tb00879.x
    Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., & Raju, M. S. (2021). EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. Complementary Therapies in Clinical Practice, 43, 101329. https://doi.org/10.1016/j.ctcp.2021.101329
    Krug, R., Mölle, M., Dodt, C., Fehm, H. L., & Born, J. (2003). Acute influences of estrogen and testosterone on divergent and convergent thinking in postmenopausal women. Neuropsychopharmacology, 28(8), 1538-1545. https://doi.org/10.1038/sj.npp.1300200
    Laird, D., Holton, E. F., & Naquin, S. S. (2003). Approaches to training and development: Revised and updated. Basic Books.
    Lamb, R., Antonenko, P., Etopio, E., & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14-26. https://doi.org/10.1016/j.compedu.2018.05.014
    Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442. https://doi.org/10.1016/j.compedu.2010.06.006
    Lee, J., Kim, C., & Lee, K. C. (2022). An empirical approach to analyzing the effects of stress on individual creativity in business problem-solving: Emphasis on the electrocardiogram, electroencephalogram methodology. Frontiers in Psychology, 13, 705442. https://doi.org/10.3389/fpsyg.2022.705442
    Lee, M., Lee, S. A., Jeong, M., & Oh, H. (2020). Quality of virtual reality and its impacts on behavioral intention. International Journal of Hospitality Management, 90, 102595. https://doi.org/10.1016/j.ijhm.2020.102595
    Lepper, M. R. (1988). Motivational considerations in the study of instruction. Cognition and Instruction, 5(4), 289-309. https://doi.org/10.1207/s1532690xci0504_3
    Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain–computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1(2), 63-71.
    Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication research. Human Communication Research, 28(4), 612-625. https://doi.org/10.1111/j.1468-2958.2002.tb00828.x
    Li, H., Du, X., Ma, H., Wang, Z., Li, Y., & Wu, J. (2022). The effect of virtual-reality-based restorative environments on creativity. International Journal of Environmental Research and Public Health, 19(19), 12083. https://doi.org/10.3390/ijerph191912083
    Li, J., Jin, Y., Lu, S., Wu, W., & Wang, P. (2020). Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method. Energy and Buildings, 224. https://doi.org/10.1016/j.enbuild.2020.110259
    Lin, Y. H., Lin, H. C. K., Wang, T. H., & Wu, C. H. (2023). Integrating the STEAM-6E model with virtual reality instruction: The contribution to motivation, effectiveness, satisfaction, and creativity of learners with diverse cognitive styles. Sustainability, 15(7), 6269. https://doi.org/10.3390/su15076269
    Linsey, J. S. (2007). Design-by-Analogy and representation in innovative engineering concept generation. The University of Texas at Austin.
    Liqun, Z. (2023). The reproduction of foreign language learning simulation scene based on virtual reality. Application of Big Data, Blockchain, and Internet of Things for Education Informatization, 467, 434-445. https://doi.org/10.1007/978-3-031-23944-1_47
    Lopez-Mesa, B., Mulet, E., Vidal, R., & Thompson, G. (2011). Effects of additional stimuli on idea-finding in design teams. Journal of Engineering Design, 22(1), 31-54. https://doi.org/10.1080/09544820902911366
    Lu, J., Luo, T., Zhang, M., Shen, Y., Zhao, P., Cai, N., Yang X., Pan, Z., & Stephens, M. (2022). Examining the impact of VR and MR on future teachers' creativity performance and influencing factors by scene expansion in instruction designs. Virtual Reality, 26(4), 1615-1636. https://doi.org/10.1007/s10055-022-00652-4
    Lu, Y., Yang, R., Dai, Y., Yuan, D., Yu, X., Liu, C., Feng L., Shen R., Wang C., Dai S. & Lin, S. (2022). Infrared radiation of graphene electrothermal film triggered alpha and theta brainwaves. arXiv preprint arXiv:2206.06956. https://doi.org/10.48550/arXiv.2206.06956
    Lucas, J. D. (2018). Immersive VR in the construction classroom to increase student understanding of sequence, assembly, and space of wood frame construction. J. Inf. Technol. Constr., 23, 179-194. https://itcon.org/papers/2018_09-ITcon-Lucas.pdf
    Luo, H., Li, G., Feng, Q., Yang, Y., & Zuo, M. (2021). Virtual reality in K‐12 and higher education: A systematic review of the literature from 2000 to 2019. Journal of Computer Assisted Learning, 37(3), 887-901. https://doi.org/10.1111/jcal.12538
    Lyu, Q., Watanabe, K., Umemura, H., & Murai, A. (2023). Design-thinking skill enhancement in virtual reality: A literature study. Frontiers in Virtual Reality, 4, 1137293. https://doi.org/10.3389/frvir.2023.1137293
    Maguire, M. J., & Schneider, J. M. (2019). Socioeconomic status related differences in resting state EEG activity correspond to differences in vocabulary and working memory in grade school. Brain and Cognition, 137. https://doi.org/10.1016/j.bandc.2019.103619
    Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141-1164. https://doi.org/10.1007/s11423-018-9581-2
    Makransky, G., & Petersen, G. B. (2019). Investigating the process of learning with desktop virtual reality: A structural equation modeling approach. Computers in Education, 134(1), 15–30. https://doi.org/10.1016/j.compedu.2019.02.002
    Mandal, A., & Saxena, N. (2022, May). SoK: Your mind tells a lot about you: On the privacy leakage via brainwave devices. 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks. https://doi.org/10.1145/3507657.3528541
    Martindale, C., & Mines, D. (1975). Creativity and cortical activation during creative, intellectual and EEG feedback tasks. Biological Psychology, 3(2), 91-100. https://doi.org/10.1016/0301-0511(75)90011-3
    Mayer, R. E. (1999). Fifty Years of Creativity Research. In Sternberg R. J., Handbook of Creativity. Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.024
    Mayer, R. E. (2002). Multimedia learning. Psychology of Learning and Motivation, 41, 85-139. Academic Press.
    Mazza, A., Dal Monte, O., Schintu, S., Colombo, S., Michielli, N., Sarasso, P., Törlind, P., Cantamessa, M., Montagna, F., & Ricci, R. (2023). Beyond alpha-band: The neural correlate of creative thinking. Neuropsychologia, 179, 108446. https://doi.org/10.1016/j.neuropsychologia.2022.108446
    Metanaut. (2019). Gadgeteer. STEAM. https://store.steampowered.com/app/746560/Gadgeteer/
    Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
    Morshad, S., Mazumder, M. R., & Ahmed, F. (2020, January). Analysis of brain wave data using Neurosky Mindwave Mobile II. ICCA 2020: Proceedings of the international conference on computing advancements. https://doi.org/10.1145/3377049.3377053
    Moss, J. (1966). Measuring creative abilities in junior high school industrial arts. Monograph 2. American Council on Industrial Arts Teacher Education.
    Mostow, J., Chang, K. M., & Nelson, J. (2011, June 28-July 15). Toward exploiting EEG input in a reading tutor. In Biswas, G., Bull, S., Kay, J., & Mitrovic, A. (Chair), Artificial intelligence in education. AIED 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21869-9_31
    Mujber, T. S., Szecsi, T., & Hashmi, M. S. (2004). Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 155, 1834-1838. https://doi.org/10.1016/j.jmatprotec.2004.04.401
    National Science and Technology Council. (2019). The networking & information technology research & development program: Supplement to the president's fy2020 budget. https://www.nitrd.gov/pubs/FY2020-NITRD-Supplement.pdf
    Nazligul, M.D., Yilmaz, M., Güleç, U., Gozcu, M.A., O'Connor, R.V., & Clarke, P.M. (2017). Overcoming public speaking anxiety of software engineers using virtual reality exposure therapy. European Conference on Software Process Improvement, 748, 191-202. https://doi.org/10.1007/978-3-319-64218-5_15
    Neguţ, A., Matu, S. A., Sava, F. A., & David, D. (2016). Task difficulty of virtual reality-based assessment tools compared to classical paper-and- pencil or computerized measures: A meta-analytic approach. Computers in Human Behavior, 54, 414-424. https://doi.org/10.1016/j.chb.2015.08.029
    Nelson, B. A., Wilson, J. O., Rosen, D., & Yen, J. (2009). Refined metrics for measuring ideation effectiveness. Design Studies, 30(6), 737-743.
    NeuroSky. (2017, January, 17). ASIC_EEG_POWER_INT. ThinkGear Serial Stream Guide. https://developer.neurosky.com/docs/doku.php?id=thinkgear_communications_protocol#eeg_power
    NeuroSky. (2018, June 14). MindWave Mobile 2 available now! Improved comfort. MindWave Mobile 2. https://neurosky.com/2018/06/mindwave-mobile-2-available-now-improved-comfort/
    Nir Kshetri (2022, August 23). Six benefits that the metaverse offers to colleges and universities. The conversation. https://theconversation.com/six-benefits-that-the-metaverse-offers-to-colleges-and-universities-188950
    Nishifuji, S., Sato, M., Maino, D., & Tanaka, S. (2010, August 18-21). Effect of acoustic stimuli and mental task on alpha, beta and gamma rhythms in brain wave. Proceedings of SICE annual conference 2010. IEEE. https://ieeexplore.ieee.org/abstract/document/5603183
    Noachtar, S., Binnie, C., Ebersole, J., Mauguiere, F., Sakamoto, A., & Westmoreland, B. (1999). A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 21-41.
    Noar, S. M. (2003). The role of structural equation modeling in scale development. Structural Equation Modeling, 10(4), 622-647. https://doi.org/10.1207/S15328007SEM1004_8
    Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39(1), 36-45. https://doi.org/10.1016/j.intell.2010.11.002
    Obeid, S., & Demirkan, H. (2020). The influence of virtual reality on design process creativity in basic design studios. Interactive Learning Environments, 31(4), 1841–1859. https://doi.org/10.1080/10494820.2020.1858116
    Ochse, R. (1990). Before the gates of excellence: The determinants of creative genius. CUP Archive.
    OECD (2019). OECD employment outlook 2019: The future of work. OECD Publishing. https://doi.org/10.1787/9ee00155-en
    OECD (2019). PISA 2021 creative thinking framework. OECD Publishing. https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf
    Olshannikova, E., Ometov, A., Koucheryavy, Y., & Olsson, T. (2015). Visualizing big data with augmented and virtual reality: Challenges and research agenda. Journal of Big Data, 2(22), 1-27. https://doi.org/10.1186/s40537-015-0031-2
    Oman, S. K., Tumer, I. Y., Wood, K., & Seepersad, C. (2013). A comparison of creativity and innovation metrics and sample validation through in-class design projects. Research in Engineering Design, 24(1), 65-92. https://doi.org/10.1007/s00163-012-0138-9
    Osborn, A. F. (1953). Applied imagination. Scribner'S.
    Osti, F., de Amicis, R., Sanchez, C. A., Tilt, A. B., Prather, E., & Liverani, A. (2021). A VR training system for learning and skills development for construction workers. Virtual Reality, 25(2), 523–538. https://doi.org/10.1007/s10055-020-00470-6
    Pacauskas, D., & Rajala, R. (2017). Information system users’ creativity: A meta-analysis of the link between IT use and creative performance. Information Technology & People, 30(1), 81–116. https://doi.org/10.1108/ITP-04-2015-0090
    Pantelidis, V. S. (2010). Reasons to use virtual reality in education and training courses and a model to determine when to use virtual reality. Themes in Science and Technology Education, 2(1-2), 59-70.
    Park, J. Y., Lee, K., & Chung, D. R. (2022). Public interest in the digital transformation accelerated by the COVID-19 pandemic and perception of its future impact. The Korean Journal of Internal Medicine, 37(6), 1223-1233. https://doi.org/10.3904/kjim.2022.129
    Parong, J., & Mayer, R. E. (2021). Learning about history in immersive virtual reality: Does immersion facilitate learning? Education Tech Research Dev, 69, 1433–1451. https://doi.org/10.1007/s11423-021-09999-y
    Patterson, T., & Han, I. (2019). Learning to teach with virtual reality: Lessons from one elementary teacher. TechTrends, 63(4), 463–469. https://doi.org/10.1007/s11528-019-00401-6
    Petri, H. L. (1996). Motivation: Theory, research, and applications. Thomson Brooks/Cole Publishing Co.
    Petsche, H., Kaplan, S., Von Stein, A., & Filz, O. (1997). The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks. International Journal of Psychophysiology, 26(1-3), 77-97. https://doi.org/10.1016/S0167-8760(97)00757-5
    Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D. & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
    Pinder, C. C. (1984). Work motivation: Theory, issues, and applications. Glenview.
    Pintrich, P. R. (1989). The dynamic interplay of student motivation and cognition in the college classroom. Advances in Motivation and Achievement, 6, 117-160.
    Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Englewood Cliffs.
    Poltavski, D. V. (2015). The use of single-electrode wireless EEG in biobehavioral investigations. In Rasooly, A., & Herold, K. (Chair), Mobile health technologies: methods and protocols. Humana Press, New York. https://doi.org/10.1007/978-1-4939-2172-0_25
    Prent, N., & Smit, D. J. (2020). The dynamics of resting-state alpha oscillations predict individual differences in creativity. Neuropsychologia, 142. https://doi.org/10.1016/j.neuropsychologia.2020.107456
    Ramos, M. A. W., Figueiredo, P. S., & Pereira-Guizzo, C. (2018). Anteced- ents of innovation in industry: The impact of work environment factors on creative performance. Innovation & Management Review, 15(3), 269–285. https://doi.org/10.1108/INMR-05-2018-0032
    Ratten, V. (2023). The post COVID-19 pandemic era: Changes in teaching and learning methods for management educators. The International Journal of Management Education, 21(2), 100777. https://doi.org/10.1016/j.ijme.2023.100777.
    Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognitive Brain Research, 10(1-2), 11-18. https://doi.org/10.1016/S0926-6410(00)00017-3
    Razumnikova, O. M., & Tarasova, I. V. (2009). Characteristics of cortical activity in persons with high and low verbal creativity: Analysis of alpha1, 2 rhythms. Zhurnal Vysshei Nervnoi Deiatelnosti imeni IP Pavlova, 59(5), 581-586. https://europepmc.org/article/med/19947533
    Redlinger, E., & Shao, C. (2021). Comparing brain activity in virtual and non-virtual environments: A VR & EEG study. Measurement: Sensors, 18. https://doi.org/10.1016/j.measen.2021.100062
    Rhodes, M. (1961). An analysis of creativity. The Phi delta kappan, 42(7), 305-310. http://www.jstor.org/stable/20342603
    Richesin, M. T., Baldwin, D. R., & Wicks, L. A. M. (2021). Art making and virtual reality: A comparison study of physiological and psychological outcomes. The Arts in Psychotherapy, 75(2021), 101823. https://doi.org/10.1016/j.aip.2021.101823
    Rospigliosi, P. (2022). Metaverse or simulacra? Roblox, Minecraft, meta and the turn to virtual reality for education, socialisation and work. Interactive Learning Environments, 30(1), 1–3. https://doi.org/10.1080/10494820.2022.2022899
    Rotherham, A. J., & Willingham, D. (2009). 21st century. Educational Leadership, 67(1), 16-21.
    Rourke, S. (2020). How does virtual reality simulation compare to simulated practice in the acquisition of clinical psychomotor skills for pre-registration student nurses? A systematic review. International Journal of Nursing Studies, 102. https://doi.org/10.1016/j.ijnurstu.2019.103466
    Runco, M. A. (2000). Creativity: Research on the process of creativity. Encyclopedia of Psychology, 2, 342-346.
    Runco, M. A., & Chand, I. (1995). Cognition and creativity. Educational Psychology Review, 7, 243-267. https://doi.org/10.1007/BF02213373
    Runco, M. A., McGarva, D. J. (2013). Creativity and motivation. In S. Kreitler, Cognition and motivation: Forging an interdisciplinary perspective (pp. 468-482). Cambridge University Press.
    Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020
    Sá, M. J., & Serpa, S. (2023). Metaverse as a learning environment: Some considerations. Sustainability 2023, 15, 2186. https://doi.org/10.3390/su15032186
    Sahu, M., Shukla, P., Chandel, A., Jain, S., & Verma, S. (2021, August). Eye blinking classification through NeuroSky MindWave headset using EegID tool. In Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., & Jaiswal, A. (Chair), International conference on innovative computing and communications. Springer. https://doi.org/10.1007/978-981-15-5113-0_65
    Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.
    Saputra, D. C. E., Azhari, A., & Ma'arif, A. (2022). K-nearest neighbor of beta signal brainwave to accelerate detection of concentration on student learning outcomes. Engineering Letters, 30(1).
    Sarkar, P., & Chakrabarti, A. (2008, October). Studying engineering design creativity-developing a common definition and associated measures. NSF workshop on studying design creativity. https://eprints.iisc.ac.in/40845/
    Sarkar, P., & Chakrabarti, A. (2008). The effect of representation of triggers on design outcomes. Ai Edam, 22(2), 101-116. https://doi.org/10.1017/S0890060408000073
    Saunders, M. N., Seepersad, C. C., & Hölttä-Otto, K. (2011). The characteristics of innovative, mechanical products. Journal of Mechanical Design, 133(2). https://doi.org/10.1115/1.4003409
    Schutte, N. S., & Malouff, J. M. (2020). Connections between curiosity, flow and creativity. Personality and Individual Differences, 152, 109555. https://doi.org/10.1016/j.paid.2019.109555
    Seligman, M. E., & Csikszentmihalyi, M. (2014). Positive psychology: An introduction. In Csikszentmihalyi, M., Flow and the foundations of positive psychology (pp. 279-298). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9088-8_18
    Sezer, A., İnel, Y., Seçkin, A. Ç., & Uluçınar, U. (2015, May). An investigation of university students’ attention levels in real classroom settings with NeuroSky’s MindWave mobile (EEG) device. International educational technology conference. IETC 2015, Istanbul, Turkey,
    Shah, J. J., Smith, S. M., Vargas-Hernandez, N., Gerkens, D. R., & Wulan, M. (2003, January). Empirical studies of design ideation: Alignment of design experiments with lab experiments. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 37017, 847-856. https://doi.org/10.1115/DETC2003/DTM-48679
    Shalley, C. E., Zhou, J., & Oldham, G. R. (2004). The effects of personal and contextual characteristics on creativity: Where should we go from here? Journal of Management, 30(6), 933-958. https://doi.org/10.1016/j.jm.2004.06.007
    Sharma, S., & Jee, S. G. (2020). Brain waves and emotional competency: Mediating role of creativity. Indian Journal of Public Health Research & Development, 11(11), 33-39. https://doi.org/10.37506/ijphrd.v11i11.11344
    Sherman, W. R., & Craig, A. B. (2018). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann.
    Singla, P., Thakur, S., Mittal, R., & Srivastava, M. (2021). Millimeter wave communication for 5G networks. CGC International Journal of Contemporary Technology and Research, 3(2), 196-198. http://dx.doi.org/10.46860/cgcijctr.2021.06.31.196
    Sinha, E. (2023). ‘Co-creating’ experiential learning in the metaverse- extending the Kolb's learning cycle and identifying potential challenges. The International Journal of Management Education, 21(3), 100875. https://doi.org/10.1016/j.ijme.2023.100875
    Song, H. S., Kalet, A. L., & Plass, J. L. (2016). Interplay of prior knowledge, self‐regulation and motivation in complex multimedia learning environments. Journal of Computer Assisted Learning, 32(1), 31-50. https://doi.org/10.1111/jcal.12117
    Soroa, G., Balluerka, N., Hommel, B., & Aritzeta, A. (2015). Assessing interactions between cognition, emotion, and motivation in creativity: The construction and validation of EDICOS. Thinking Skills and Creativity, 17, 45-58. https://doi.org/10.1016/j.tsc.2015.05.002
    Sternberg, R. J. (1999). Handbook of creativity. Cambridge University Press.
    Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. Free press.
    Sternberg, R. J., & Rainbow Project Collaborators. (2006). The rainbow project: Enhancing the SAT through assessments of analytical, practical, and creative skills. Intelligence, 34(4), 321-350. https://doi.org/10.1016/j.intell.2006.01.002
    Stevens Jr, C. E., & Zabelina, D. L. (2019). Creativity comes in waves: An EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154-162. https://doi.org/10.1016/j.cobeha.2019.02.003
    Stojanova, B. (2010). Development of creativity as a basic task of the modern educational system. Procedia-Social and Behavioral Sciences, 2(2), 3395-3400. https://doi.org/10.1016/j.sbspro.2010.03.522
    Stojanova, B. (2010). Development of creativity as a basic task of the modern educational system. Procedia-Social and Behavioral Sciences, 2(2), 3395-3400. https://doi.org/10.1016/j.sbspro.2010.03.522
    Subramanian, A., Barnes, J., Vemulapalli, N., & Chhawri, S. (2016). Virtual reality museum of consumer technologies. Advances in Intelligent Systems and Computing, 498, 549-560. http://doi.org/10.1007/978-3-319-42070-7_51
    Suh, A., & Prophet, J. (2018). The state of immersive technology research: A literature analysis. Computers in Human Behavior, 86, 77–90. https://doi.org/10.1016/j.chb.2018.04.019
    Sun, J. C. Y., & Yeh, K. P. C. (2017). The effects of attention monitoring with EEG biofeedback on university students' attention and self-efficacy: The case of anti-phishing instructional materials. Computers & Education, 106, 73-82. https://doi.org/10.1016/j.compedu.2016.12.003
    Taheri, S.M., Matsushita, K., & Sasaki, M. (2017). Virtual reality driving simulation for measuring driver behavior and characteristics. Journal of Transportation Technologies, 7, 123-132. https://doi.org/10.4236/jtts.2017.72009
    Tang, H., Dai, M., Du, X., Hung, J. L., & Li, H. (2023). An EEG study on college students’ attention levels in a blended computer science class. Innovations in Education and Teaching International, 1–13. https://doi.org/10.1080/14703297.2023.2166562
    Tauscher, J. P., Schottky, F. W., Grogorick, S., Bittner, P. M., Mustafa, M., & Magnor, M. (2019, March 23-27). Immersive EEG: evaluating electroencephalography in virtual reality. 2019 IEEE conference on virtual ueality and 3D User interfaces (VR), Osaka, Japan. https://doi.org/10.1109/VR.2019.8797858
    The White House. (2019). Executive order on president's council of advisors on science and technology—infrastructure & technology. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-presidents-council-of-advisors-on-science-and-technology/
    Tilhou, R., Taylor, V., & Crompton, H. (2020). 3D virtual reality in K-12 education: A thematic systematic review. Emerging Technologies and Pedagogies in the Curriculum, 169-184. https://doi.org/10.1007/978-981-15-0618-5_10
    Toumi, K., Girandola, F., & Bonnardel, N. (2021). Technologies for supporting creativity in design: A view of physical and virtual environments with regard to cognitive and social processes. Creativity. Theories–Research-Applications, 8(1), 189-212. https://doi.org/10.2478/ctra-2021-0012
    Tussyadiah, I.P., Wang, D., Jung, T.H., & Dieck, M.C. (2018). Virtual reality, presence, and attitude change: Empirical evidence from tourism. Tourism Management, 66, 140-154. https://doi.org/10.1016/j.tourman.2017.12.003
    Vidal, R., Mulet, E., & Gómez-Senent, E. (2004). Effectiveness of the means of expression in creative problem-solving in design groups. Journal of Engineering Design, 15(3), 285-298. https://doi.org/10.1080/09544820410001697587
    Wallach, M.A., & Kogan, N. (1965). Modes of thinking in young children. Holt, Rinehart and Winston.
    Wallas, G. (1926). The art of thought. Harcourt, Brace.
    Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The creative thinking cognitive process influenced by acute stress in humans: An electroencephalography study. Stress, 22(4), 472-481. https://doi.org/10.1080/10253890.2019.1604665
    Wang, Y. Y., Weng, T. H., Tsai, I. F., Kao, J. Y., & Chang, Y. S. (2022). Effects of virtual reality on creativity performance and perceived immersion: A study of brain waves. British Journal of Educational Technology, 54(2), 581-602. https://doi.org/10.1111/bjet.13264
    Ward, T. B., Smith, S. M., & Finke, R. A. (1999). Creative cognition. In Sternberg R. J., Handbook of creativity. Cambridge University Press.
    Webster, R. (2016). Declarative knowledge acquisition in immersive virtual learning environments. Interactive Learning Environments, 24(6), 1319-1333. https://doi.org/10.1080/10494820.2014.994533
    Weisberg, R. (1986). Creativity: Genius and other myths. WH Freeman/Times Books/ Henry Holt & Co.
    Woodman, R. W., & Schoenfeldt, L. F. (1990). An interactionist model of creative behavior. The Journal of Creative Behavior, 24(1), 10–20. https://doi.org/10.1002/j.2162-6057.1990.tb00525.x
    Woodman, R. W., Sawyer, J. E., & Griffin, R. W. (1993). Toward a theory of organizational creativity. The Academy of Management Review, 18(2), 293–321. https://doi.org/10.2307/258761
    World Economic Forum. (2023). The future of jobs report 2023. OECD Publishing. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf?_
    Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta- analysis. British Journal of Educational Technology, 51(6), 1991-2005. https://doi.org/10.1111/ bjet.13023
    Yang, X., Lin, L., Cheng, P. Y., Yang, X., & Ren, Y. (2019). Which EEG feedback works better for creativity performance in immersive virtual reality: The reminder or encouraging feedback? Computers in Human Behavior, 99, 345–351. https://doi.org/10.1016/j.chb.2019. 06.002
    Yang, X., Lin, L., Cheng, P. Y., Yang, X., Ren, Y., & Huang, Y. M. (2018). Examining creativity through a virtual reality support system. Educational Technology Research and Development, 66, 1231-1254. https://doi.org/10.1007/s11423-018-9604-z
    Yang, Y., Jenny, B., Dwyer, T., Marriott, K., Chen, H., & Cordeil, M. (2018, June). Maps and globes in virtual reality. Computer Graphics Forum, 37(3), 427-438. https://doi.org/10.1111/cgf.13431
    Yeom, S., Kim, H., & Hong, T. (2021). Psychological and physiological effects of a green wall on occupants: A cross-over study in virtual reality. Building and Environment, 204. https://doi.org/10.1016/j.buildenv.2021.108134
    Yu, M., Li, Y., & Tian, F. (2021). Responses of functional brain networks while watching 2D and 3D videos: An EEG study. Biomedical Signal Processing and Control, 68, 102613. https://doi.org/10.1016/j.bspc.2021.102613
    Yu, M., Xiao, S., Hua, M., Wang, H., Chen, X., Tian, F., & Li, Y. (2021). EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomedical Signal Processing and Control, 72. https://doi.org/10.1016/j.bspc.2021.103349
    Zeng, W., & Richardson, A. (2016). Adding dimension to content: Immersive virtual reality for e-commerce. ACIS 2016 Proceedings. https://aisel.aisnet.org/acis2016/24
    Zhang, L., Lv, Q., & Xu, Y. (2017, October). Single channel brain-computer interface control system based on TGAM module. 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI). IEEE. https://ieeexplore.ieee.org/abstract/document/8302235
    Zhang, Z. S., Hoxha, L., Aljughaiman, A., Arënliu, A., Gomez‐Arizaga, M. P., Gucyeter, S., Ponomareva, I., Shi, J., Irueste, P., Rogl, S., Nunez, M. & Ziegler, A. (2021). Social environmental factors and personal motivational factors associated with creative achievement: A cross‐cultural perspective. The Journal of Creative Behavior, 55(2), 410-432. https://doi.org/10.1002/jocb.463
    Zhang, Z., Hoxha, L., Aljughaiman, A., Gomez-arizaga, M.P., Gucyeter, S., Ponomareva, I., Shi, J., Grabner, R., Irueste, P., Roy, P. & Ziegler, A. (2018). Creativity motivation construct development and cross-cultural validation. Psychological Test and Assessment Modeling, 60(4), 517– 530.
    Zhou, J., & George, J. M. (2001). When job dissatisfaction leads to creativity: Encouraging the expression of voice. Academy of Management Journal, 44(4), 682–696. https://doi.org/10.2307/3069410
    Zinchenko, Y. P., Khoroshikh, P. P., Sergievich, A. A., Smirnov, A. S., Tumyalis, A. V., Kovalev, A. I., Gutnikov, S. A. & Golokhvast, K. S. (2020). Virtual reality is more efficient in learning human heart anatomy especially for subjects with low baseline knowledge. New Ideas in Psychology, 59, 100786. https://doi.org/10.1016/j.newideapsych.2020.100786

    下載圖示
    QR CODE