研究生: |
李超然 |
---|---|
論文名稱: |
是非題及選擇題答題之腦電波分析 The Analysis of EEG for Yes-No and Multiple-Choice Questions |
指導教授: | 葉榮木 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 認知科學 、大腦人機介面 、腦電波 、線性鑑別分析 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
大腦認知活動的分析,目前在教育心理學和認知神經科學等領域已被廣泛的研究。本研究目的除了將腦電波訊號做資料分類的分析,以便於應用在大腦人機介面(Brain Computer Interface, BCI)之外,也討論了實驗設計所給予的不同類型問題對大腦認知活動的影響。
本研究利用所設計的問題當刺激,來探討受測者在思考不同類型問題時腦電波的差異,其中以智力測驗為主的選擇題實驗研究中發現Theta在做思考數學問題時的能量,均高於思考圖形幾何問題的能量,但在Alpha頻段則恰好相反。另外藉由是非題實驗我們卻也發現Gamma頻段對於不同類型的問題在認知活動時並無差異。
在辨識的部份,本實驗目的為找出特徵擷取的方法,對受測者在想像回答「是」與「否」的腦電波做分類辨識,以及找出最適當且少量的電極組合來降低運算量。腦電波辨識是否成功的關鍵,在於特徵擷取與分類兩個議題。過去文獻將重點放在分類演算法的改良上,然而找出重要的特徵,可以獲得更高的辨識率。研究中發現在時域部份所擷取的腦電波具有相當好的鑑別性,藉由線性鑑別分析法(LDA)找出最佳的轉換向量,讓資料更具鑑別性,再計算特徵像量間的歐氏距離就可分類腦電波。結果顯示本實驗使用了C3、C4及F3三個電極,腦電波辨識的準確率大幅提升至99%。
Abstract
In the field of educational psychology and cognitive neuroscience, the analysis on the activities of cerebrum cognition is generally researched at present. This study is not only to analyze and classify the electroencephalography signals in favor of being applied on the Brain Computer Interface, or BCI, but also to discuss the effect on the cognitive thinking which is due to being inducted by different kinds of questions. The analysis of this study is based on the frequently used EEG bands in recent years.
By means of the multiple-choice questions, we use intelligence test, this study discusses the differences on the energy of these bands for being tested by different kinds of questions. In contrast with the energy of Alpha band, the study results show that the energy of Theta band as the testee doing the math questions is much higher than that of Theta band as the testee doing the geometry questions. The energy of the Gamma band shows no differences on cognitive activities for being tested by different kinds of questions.
At the identification portion, this experiment is to find out the method of characteristic acquisition, to identify the electroencephalography of the testee as he imaging answering for ‘yes’ or ‘no’, and to find out the least and the most suitable channel in order to minimize the quantity of operation. Algorithms of feature detection and classification are the two keys to EEG classifying. In the past, most articles focused on the improvement of classifiers, but selecting simper and more important feature is an alternative way to get a high accuracy. The feature extraction can be obtained by the Linear Discriminant Analysis (LDA). The method also uses Nearest Neighbor Rule (NNR) to classify the processed data.The experimental results show that the average accuracy rate is improved to 99% by C3、C4 and F3 channels.
參考文獻
沈世評(2005)「用線性鑑別分析法做冥想的四個方向」,第二屆生活智慧科技研討會。國立勤益科技大學。
曾坤章(2006):你開悟了嗎?遠離豬頭擁抱佛陀。台灣:小海豚意識科技。
陳致仰(2007):改良式對角化主要成份分析法應用於兩類別想像動作腦電波的分類。第二屆生活智慧科技研討會。國立勤益科技大學。
韓世輝,朱瀅(2004):認知神經科學。廣東 : 高等教育出版社
蔡志浩(2008) : 認知心理學「大腦的逆向工程」。期待一個更美好的臺灣 :認知類別。
Allport, G. W. (1937). Personality: A psychological interpretation. New York: Holt.
Andreas, K. Thomas, M. & Kai Epstudec.(2006),” Alpha-band activity reflects reduction of mental effort in a comparison task: A source space analysis”, Brain Research, 1121,117–127.
Bhattacharya, J. and Petsche, H. (2005), “Phase Synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise,” Signal Processing, Vol. 85, pp. 2161-2177,
Caton, R. (1875), “The electric currents of the brain,” British Medical Journal, Vol. 2, pp 278,
Cincotti, F., Bianchi, L., Birch, G.., Guger, C., Mellinger, J., Scherer, R., Schmidt, R. N., Suárez, O. Y., and Schalk, G. (2006.), “BCI Meeting 2005—Workshop on Technology: Hardware and Software,” IEEE Trans. Rehabil. Eng., Vol. 14, no. 2, pp. 128-131,
Cooley, J. W. and Tukey, J.W. (1965), “An algorithm for the machine calculation of complex Fourier series,” Math. Comput, Vol. 19, pp 297-301,
Dunn, B. R., & Reddix, M. D. (1991), “Modal processing style differences in the recall of expository text and poetry,” Learning and Individual Differences, 3, 265–293,
fMRI Unit. (1989)「整合性腦功能實驗室-超高磁場功能性磁振造影研究室」. http://ibru.vghtpe.gov.tw/chinese/fMRI.htm
Glass, A., & Riding, R. J. (1999), “EEG differences and cognitive style,” Biological Psychology, 51, 23–41,
Guest, E. (2006), “Guest Editorial the Third International Meeting on Brain-Computer Interface Technology: Making a Difference,” IEEE Trans. Rehabil. Eng., Vol. 14, no. 2, pp. 126-127,
Guger, C., Edlinger, G. ., Harkam, W., Niedermayer, I. and Pfurtscheller, G. (2003), “How Many People are Able to Operate an EEG-Based Brain-Computer Interface (BCI)?”, IEEE Transactions On Neural Systems And Rehabilitation Engineering, VOL. 11, NO. 2,
Jasper, H., (1958), “Report of committee on methods of clinical exam in EEG,” Electroencephalogr. Clin. Neurophysiol., 10: 370-375,
Ye, J., & Li, Q. ( 2005.), “A Two-Stage Linear Discriminant Analysis via QR-Decomposition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 929 – 941,
Jang, J. S. "Data Clustering and Pattern Recognition," (in Chinese) available at the links for on-line courses at the author's homepage at http://www.cs.nthu.edu.tw/~jang.
Kamousi, B., Liu, Z.and He, B., IEEE, (2005), “Classification of Motor Imagery Tasks for Brain-Computer Interface Applications by Means of Two Equivalent Dipoles Analysis,” IEEE Transactions On Neural Systems And Rehabilitation Engineering, vol. 13, no. 2,
Klimesch, W. (1999), “EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis,” Brain Research Reviews, 29, 169–195,
Kübler, A., Mushahwar, V. K., Hochberg, L. R., and Donoghue, J. P. (2006), “BCI Meeting 2005—Workshop on Clinical Issues and Applications,” IEEE Trans. Rehabil. Eng., Vol. 14, no. 2, pp. 131-134,
Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G.,and Moran, D. W.(2004), “A Brain-Computer Interface Using Electrocorticographic Signals in Humans,” Journal of Neural Eng., Vol. 1, no. 2, pp. 63–71,
MEG Unit. (1989),「整合性腦功能實驗室-腦磁波研究室」. http://ibru.vghtpe.gov.tw/chinese/meg.htm
Phothisonothai, M. & Nakagawa, M. (2006), “EEG-Based Classification of New Imagery Tasks Using Three-Layer Feedforward Neural Network Classifier for Brain–Computer Interface,“ Journal of the Physical Society of Japan.
O’Connor, K. P., & Shaw, J. C. (1978), ”Field dependence, laterality, and the EEG,” Biological Psychology, 6, 93–109,
Orekhova, E. V., Stroganova, T. A., Nygren, G., M.Tsetlin, M., Posikera, Irina N., Gillberg, C., & Elam, M. (2007), “Excess of High Frequency Electroencephalogram Oscillations in Boys with Autism,” Biological Psychology. 62:1022–1029,
Rayner, S. G. (2000), Reconstructing style differences in thinking and learning: Profiling learning performance. In Riding, R. J. & Rayner (Eds.), S. G. International perspectives on individual differences. Vol. 1: Cognitive styles ( pp. 115–180). Stamford, CN: Ablex Publishing.
Riding, R. (2000), Cognitive style: A review. In R. J. Riding, & S. G. Rayner (Eds.), International perspectives on individual differences. Vol. 1: Cognitive styles ( pp. 315–344). Stamford, CN: Ablex Publishing.
Riding, R., & Cheema, I. (1991). Cognitive styles—An overview and integration. Educational Psychology, 11, 193–215.
Riding, R. J., Glass, A., Butler, S. R., & Pleydell-Pearce, C. W. (1997). Cognitive style and individual differences EEG alpha during information processing. Educational Psychology, 17, 219–234.
Rocha F.T., Rocha A.F.,b,, Massad E.,& Menezes R.(2005), “Brain mappings of the arithmetic processing in children and adults,” Cognitive Brain Research 22 : 359–372,