簡易檢索 / 詳目顯示

研究生: 李佳奇
論文名稱: 高中生對條件機率解題策略與錯誤類型之探討
指導教授: 陳昭地
Chen, Zhao-Di
程毅豪
Chen, Yi-Hau
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 111
中文關鍵詞: 條件機率解題策略錯誤類型
論文種類: 學術論文
相關次數: 點閱:371下載:79
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於探討高中學生對條件機率的解題策略、錯誤類型和背後的錯誤原因。
    本研究的方法乃是藉由設計的條件機率試題問卷來探討學生的解題策略和錯誤類型,並且輔以面談的方式找出錯誤類型背後的錯誤原因;而本研究的樣本乃是選取台北縣的兩所高中高二和高三各四個班級,共計324個學生。
    本研究的主要結果為:
    一、解題策略上:(1)高二的學生習慣藉由求出事件樣本個數的方式來計算條件機率,而缺乏操作事件機率來求取條件機率的能力。(2)高三的學生雖然具有操作事件機率來求取條件機率的能力,但是他們經常忽略兩事件間的關係,而個別計算不同基礎下的兩事件機率,然後將其相乘求解。
    二、在錯誤類型上:(1)學生經常將條件機率的問題誤為交集機率的問題。(2)學生在處理條件機率的問題時,經常採用個別計算不同基礎下的兩事件機率並將其相乘求解。(3)在處理基本概念的條件機率問題時,部分高三的學生會誤用排容原理來進行解題。(4)在處理基本事件之機率不相等的條件機率問題時,學生容易經常患了等機率的偏見。(5)當解需要應用到貝氏定理的條件機率問題時,學生經常用P(B|A)或P(A B)來求 P(A|B)。(6)當解某些需要應用到貝氏定理的條件機率問題時,學生經常只考慮到條件事件的部分情況,而忽略其他情況。(7)當解某些需要應用到貝氏定理的條件機率問題時,學生經常受到事件先後發生順序的影響而忽略條件事件。(8)當解某些需要應用到貝氏定理的條件機率問題時,學生經常受到問題情境的影響,只考慮到問題中某一給定事件的比例。
    最後根據本研究之結果加以討論,並提出若干建議,希望能提供教材編輯者編寫教材及教師往後教學時的參考。

    第一章 緒論…………………………………………………………1 第一節 研究動機…………………………………………………1 第二節 研究目的…………………………………………………4 第三節 名詞解釋…………………………………………………4 第二章 文獻探討…………………………………………………….6 第一節 數學解題歷程的相關研究………………………………6 第二節 機率迷思概念的相關研究……………………………..16 第三節 條件機率迷思概念的相關研究…..……………………20 第四節 機率迷思概念與教學上的關係…..……………………21 第三章 研究方法……………………………………………………22 第一節 研究架構…..……………………………………………22 第二節 研究設計…..……………………………………………23 第三節 研究樣本…..……………………………………………23 第四節 研究工具…..……………………………………………24 第五節 研究過程…..……………………………………………26 第六節 研究限制…..……………………………………………29 第四章 研究結果與討論……………………………………………30 第一節 資料處理與統計…………………………………………30 第二節 解題策略與錯誤類型分析………………………………31 第三節 錯誤原因分析……………………………………………45 第五章 結論與建議…………………………………………………59 第一節 結論………………………………………………………59 第二節 建議………………………………………………………62 參考文獻………………………………………………………………..64 中文部分………………………………………………………….64 英文部分………………………………………………………….65 附錄……………………………………………………………………..70 附錄一 答題說明和注意事項…………………………………70 附錄二 預測試題………………………………………………71 附錄三 實測試題………………………………………………75 附錄四 各題之作答情形………………………………………77 附錄五 訪談錯誤類型之分類…………………………………93

    中文部分:
    吳芝儀、李奉儒譯,Michael Quinn Patton 著(民88)。質的研究與評鑑。桂冠圖書公司。
    林明哲(民79)。國中學生數學解題行為之分析研究。國立彰化師範大學科學教育研究所碩士論文。
    林燈茂(民78)。國小機率教材─「大數法則、機率值」教學困難與對策之試探研究。國民教育輔導叢書(九),省立屏東師範學院。
    林燈茂(民81)。11-16歲學童之之「相對差異」與「大數法則」概念初探。國立彰化師範大學科學教育研究所碩士論文。
    林清山譯,Richard E. Mayer著(民86)。教育心理學─認知取向。台北:遠流出版社,三版。
    李源順(民83) 。機率與統計教學研究的文獻探討。國立僑生大學先修班學報311-352頁。
    施能宏(民86)。國小高年級學生機率文字題表現之研究。國立台中師範學院國民教育研究所碩士論文。
    陳順宇(民80)。國中生機率、統計能力評量分析(I)。國科會研究報告。
    陳順宇(民81)。國中生機率、統計能力評量分析(II)。國科會研究報告。
    陳順宇、鄭碧娥(民82)。國中生機率能力評量分析。第八屆科教研討會論文彙刊pp.39-68.。
    陳順宇、鄭碧娥(民83)。中學統計課程之研究。國科會專題研究報告。
    黃文濤(民)。機率導論及其應用。
    國立台灣師範大學科學教育中心主編。高級中學基礎數學第四冊。國立編譯館出版。
    國立台灣師範大學科學教育中心主編。高級中學基礎數學第四冊教師師手冊。國立編譯館出版。
    劉宏輝(民84)。高雄地區高三學生解排列組合問題錯誤類型之分析研究。國立高雄師範大學數學教育研究所碩士論文。
    羅汝惠(民82)。台灣南區國中一年級數學科解題導向教學法與傳統教學法之教學成效比較研究。國立高雄師範大學數學教育研究所碩士論文。
    閻育蘇譯,張公緒校,G.Polya 著(民82)。怎樣解題。台北:九章出版社,二版。
    英文部分:
    Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments.
    Acta Psychologica, 44, 211-233.
    Bar-Hillel, M. & Falk, R. (1982). Some teasers concerning conditional probabilities. Cognition, 11, 109-122.
    Borovcnik, M. (1984). Revising probabilities according to new information. Paper presented at the fifth meeting of the International Congress on Mathematics Education Adelaide.
    Borovcnik, M. (1988). Revising probabilities according to new information: A fundamental stochastic intution. In R. Davidson, & J. Swift(Eds.), The Proceedings of the Second International Conference on Teaching Statistics. Victoria, B.C.: University of Victoria.
    Carpenter, T. P.(1989). Teaching as problem solving. In R. Charles & E.
    Silver (Eds.), The teaching and assessing of mathematical problem solving(pp. 187-202). Reston, VA: National Council Of Teachers Of
    Mathematics.
    Cohen, J. (1957). Subjective probability. Scientific American, 197, 128-138.
    Cohen, J. (1960). Chance, skill, and luck: The psychology of guessing and gambling. Baltimore, MD: Penguin Books.
    Einhorn, H. J., & Hogarth, R. M. (1986). Judging probable cause. Psychological Bulletin, 99, 3-19.
    Falk, R. (1979). Revision of probabilities and the time axis. In
    Proceedings of the Third International Conference for the Psychology
    of Mathematics Education (pp. 222-229). Grenoble, France.
    Falk, R. (1988). Conditional probabilities: Insight and difficulties. In R.
    Davidson & J. Swift(Eds.), The Proceedings of the Second International Conference on teaching Statistics. Victoria, B. C.:University of Victoria.
    Falk, R. & Bar-Hillel, M. (1983). Probabilistic dependence between events. Two-Year-College Mathematics Journal, 14, 240-247.
    Fischbein, E., Pampu, I., & Minzat, I.(1970). Comparison of ratios and the chance concept in children, Children Development 41, 377-389.
    Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, The Netherlands: Reidel.
    Fischbein, E. & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuition? Educational Studies in Mathematics, 15, 1-24.
    Fischbein, E., Nello, M. s., & Marino, M. S. (1991). Factors affecting probabilistic judgments in children and adolescents. Educational Studies in Mathematics, 22, 523-549.
    Garfield, J. B., & Ahlgren (1988a). Difficulties in learning basic concepts in probability and statistics : Implication for research.. Journal For Research in Mathematics Education, 19, 44-63.
    Green, D. R. (1983a). A survey of probability concepts in 3000 pupils aged 11-16 years. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Coference on teaching statistics, (pp. 766-783). Sheffield, UK: Teaching statistics Trust.
    Goldin, G. A. (1985). Thinking scientifically and thinking mathematically . A discussion of the paper by Heller and Hungate . In E. A. Silver(Ed.). Teaching and learning mathematical problem solving : Multiple research perspectives (p.113-122). Lawrence Erlabaum Associates publishers Hillsdale New Jersey.
    Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press.
    Hawkins, A. & Kapadia, R. (1984). Children’s conceptions of probability: A Psychological and pedagogical review. Educational Studies in Mathematics, 15, 349-377.
    Kahneman, D., & Tversky, A. (1972). Subjective probability: Ajudgment of representativeness. Cognitive Psychology, 3 , 430-454.
    Kahneman, D., & Tversky, A. (1973b). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5 , 207-232.
    Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristic and Biase. Cambridge: Cambridge University Press.
    Kelly, I. W. & Zwiers, F. W. (1988). Mutually exclusive and independence : Unravelling basic misconceptions in probability theory. In R. Davidson, & J. Swift(Eds.), The Proceedings of the Second International Conference on Teaching Statistics. Victoria, B.C.: University of Victoria.
    Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. Paper presented at Silver , E. A. (Ed. ), Teaching and Learning mathematical problem solving.: Multiple research prespective , 1-15. Hillsadle , N.J. : Erlbaum.
    Konold, C. (1983). Conceptions about probability: Reality between a rock and a hard place. (Doctoral dissertation , University of Massachusetts, 1983). Dissertation Abstracts International, 43 ,4179B.
    Konold, C. (1989a). Informal conceptions of probability. Cognition and Instruction, 6 , 59-98.
    Konold, C. (1989b). An outbreak of brief in independence? In C. Maher, G. Goldin, & B. Davis (Eds.), The Proceedings of the Eleventh Annual Meeting of the North American Chapter of the international Group for the Psychology of Mathematics Education ( vol. 2, pp. 203-209). Rutgers, NJ: Rutgers University Press.
    Konold, C. (1991). Understanding the students’ beliefs about probability.In E. Von Glasersfeld (Ed.), Radical Constructivism in Mathematics Education (pp. 139-156). Holland: Kliwer.
    Lecoutre, M. (1992). Cognitive models and problem spaces in〝purely random〞situations. Educational Studies in Mathematics, 23, 557-568.
    Lester, F. K. (1980a). Problem Solving : Is it a problem ? In M. M. Lindquist . (Ed. ), Selected issues in mathematics education , 36. Bekeley Calif : Mccutchan.
    Lester, F. K. (1980b). Research on mathematical problem solving. In R. J. Shumway. (Ed. ), Research in mathematics education , 286-318. NCTM.
    Lester, F. K. (1982). Buliding bridges between psychological and mathematics education research on problem solving . In F. K. Letser & Garofol . (Eds. ), mathematical problem solving : Issues in research, 51-81. Philadephia, PA : The Franklin Institute Press.
    Mayer, R. E. (1992). Thinking, problem solving, cognition, 384-414. New York : W. H. Freeman and Company.
    National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: author . Newman, C. M. , Obremski, T. E., & Scheaffer, R. L. (1987). Exploring probability. Palo Alto: Dale Seymour.
    Nisbett, R. E., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical heuristics in everyday reasoning. Psychological Review, 90, 339-363.
    Pollatsek, A., Well, A. D., Konold, C., & Hardiman, P. (1987). understanding conditional probabilities. Organizational Behavior and Human Decision Processes, 40, 255-269.
    Polya, G. (1945). How to solve it. New York : Doubleday.
    Schoenfeld, A. H. (1980). Teaching problem-solving skills. American Mathematical monthly, 87(10), 794-805.
    Schoenfeld, A. H. (1985). Mathematical problem solving. London : Academic Press.
    Shaughnessy, J. M. (1976). A clinical investigation of college students’ reliance upon the heuristics of availability and representativeness in estimating the likelihood of probabilistic events. Dissertation Abstract International, 37, 5662A.
    Shaughnessy, J. M. (1977). Misconception of probability: An experiment with a small-group, activity-based, model building approach to introductory probability at the college level. Educational Studies in Mathematics, 8, 285-316.
    Shaughnessy, J. M. (1981). Misconception of probability: From systematic errors to systematic experiments and decisions. In A. Schulte(Ed.), Teaching Statistics and Probability (Yearbook of the National Council of Teachers of Mathematics, pp. 90-100). Reston. VA: NCTM.
    Shaughnessy, J. M. (1983a). Misconception of probability: From systematic and otherwise: Teaching probability and statistics so as to overcome some misconceptions. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.) Proceedings of the First International Conference on teaching Statistics (pp. 784-801). Sheffield, U.K.: Teaching Statistics Trust.
    Shaughnessy, J. M. (1983b). The psychology of inference and the teaching of probability and statistics : Two sides of the same coin? In R. Scholz (Ed.), Decision making under uncertainty (pp. 325-350). Amsterdam: North-Holland.
    Shaughnessy, J. M. (1985). Problem solving derailers: The inference of misconceptions on problem-solving performance. In E. Silver(Ed.), Teaching and learning mathematical problem-solving: Multiple research perspectives (pp. 199-214). Hillsdale, NJ: Lawrence Erlbaum.
    Shaughnessy, J. M. & Dick, T. (1991). Monty’s delimma: should you stick or switch? The Mathematics Teacher, 84, 252-256.
    Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and Biases. Science, 185, 1124-1131.
    Tversky, A., & Kahneman, D. (1980). Causal schemas in judgment under uncertainty. In M. Fischbein (Ed.), Progress in social psychology. Hillsdale, NJ: Lawrence Erlbaum.
    Tversky, A., & Kahneman, D. (1982a). Judgments of and by representativeness. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), judgment under uncertainty: Heuristics and Biases (pp. 84-100). Cambridge, U.K: Cambridge University Press.
    Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasioning: The conjunction fallacy in probability judgment psychological Review, 90(4), 293-315.
    Watson, J. M. (1995), Conditional Probability : Place in the mathematics curriculum. The Mathematics Teacher, 84, 12-17.

    QR CODE