研究生: |
王子榛 Wang, Tzu-Chen |
---|---|
論文名稱: |
第19/22型小腦萎縮症果蠅模式之致病機轉研究: 內質網壓力 Drosophila models of Spinocerebellar Ataxia type19/22 (SCA19/22) for pathomechanism study: ER stress |
指導教授: |
蘇銘燦
Su, Ming-Tsan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 第19/22小腦萎縮症 (SCA19/22) 、KCND3 、Kv4.3 、內質網壓力 、果蠅 |
英文關鍵詞: | Spinocerebellar ataxia 19/22 (SCA19/22), KCND3, Kv4.3, Endoplasmic reticulum stress (ER stress), Drosophila |
DOI URL: | http://doi.org/10.6345/NTNU201900935 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第22型小腦萎縮症 (另一名為第19型小腦萎縮症) 主要為A型鉀離子通道 (KCND3 / Kv4.3) 的基因突變所造成的一種顯性退化性神經遺傳疾病。目前造成第22型小腦萎縮症致病機轉並不清楚,我的研究目的:(1) 建立第22型小腦萎縮症的果蠅模式;(2) 解析第22型小腦萎縮症的致病機轉。我們利用轉殖野生型KCND3wt, 突變KCND3G345V 及 KCND3ΔF277 蛋白建立第22型小腦萎縮症的果蠅模式,過量表現突變KCND3G345V 及 KCND3ΔF277 蛋白造成果蠅包括複眼退化、運動功能失調、壽命降低等性狀。由免疫螢光染色發現Kv4.3蛋白質位於內質網,野生型KCND3wt及突變KCND3G345V 及 KCND3ΔF227 核酸 (mRNA) 表現量相同,但突變Kv4.3較野生型Kv4.3蛋白表現量顯著大量降低,推測突變蛋白質因摺疊不正常而被水解,突變Kv4.3蛋白也較正常Kv4.3蛋白質引發更大的內質網壓力 (ER-stress) ,突變蛋白引發果蠅表現更多Xbp1s剪切核酸,及ER-stress感受標誌基因,突變蛋白引發持續性內質網壓力,也造成細胞死亡,表現p53H159N及抑制細胞凋亡蛋白DIAP I (Death-associated inhibitor of apoptosis 1) 則可抑制第22小腦萎縮症果蠅複眼感光細胞死亡,顯示突變Kv4.3蛋白造成的退化是細胞凋亡的結果,由於未折疊蛋白反應 (unfolded protein respose - upr) 是造成內質網壓力的主要原因之一,Xbp1s轉錄因子可促進內質網伴護蛋白表現以助蛋白質正摺疊,我們發現過量Xbp1s蛋白可改善疾病果蠅模式複眼退化,增加突變蛋白表現量,相反地,降低Xbp1s蛋白質表現量則顯著加劇突變Kv4.3蛋白質造成複眼退化,相同地,過量表現內質網伴護白Hsc70,則可顯著改善突變Kv4.3蛋白造成的危害,並增加突變蛋白表現量,顯示Xbp1s及Hsc70有助突變Kv4.3蛋白質折疊,而不受蛋白酶體水解。綜合上述結果,我們認為突變Kv4.3蛋白質引發的持續性內質網壓力為第22型小腦萎縮症的致病原因之一。
The spinocerebellar ataxia type 22 (SCA22), alternatively known as SCA19, is an autosomal dominant neurodegenerative disease caused by the mutations in the A-type potassium channel KCND3 / Kv4.3 gene. Currently, the disease mechanisms underlying the SCA22 is elusive. The objectives of the studies are: (1) Generating Drosophila models SCA22; (2) dissecting the pathomechanisms of the disease. We have generated Drosophila models for SCA19/22 by overexpressing mutant Kv4.3 proteins (KCND3G345V and KCND3ΔF227). The SCA19/22 fly models exhibit many age-dependent phenotypes, including degeneration, shorten lifespan, mobility defect, and neuronal apoptosis. Co-expression of a p53H159N or Drosophila inhibitor of apoptosis I (DIAPI) reduced rough eye phenotype in SCA22 fly models, indicating that mutant KCND3 induced apoptosis. Mutant KCND3G345V and KCND3ΔF277 induced retinal degenerative phenotypes can be rescued by the expression of the ER-stress sensor Xbp1s, suggesting that unfolded protein response (UPR) and Endoplasmic Reticulum stress (ER stress) might be involved in mutant KCND3 induced apoptosis. Overexpression of the ER-specific chaperone, Hsc70, improved the rough eye phenotype of SCA22 fly models. Compared to wild type KCND3wt, mutant KCND3G345V and KCND3ΔF277 proteins are less stable and are likely to be subjected for proteolytic cleavage because their protein levels are greatly reduced while the mRNA levels are compatible in flies.
1. Schelhaas, H. J. et al. (2001) "Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia." J. Neurol. 248: 113-120.
2. Duarri, A. et al. (2012) "Mutations in potassium channel KCND3 cause spinocerebellar ataxia type 19." Ann. Neurol. 72: 870-880.
3. Verbeek, DS. et al. (2002) "Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21." Human Genetics. 111: 388±93.
4. Chung, M. et al. (2003) "A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23." Brain 126: 1293-1299.
5. Schelhaas, H. J. et al. (2004) "SCA19 and SCA22: evidence for one locus with a worldwide distribution." (Letter) Brain 127: e6.
6. Chung, M. and Soong, B. (2004) Reply to: "SCA-19 and SCA-22: evidence for one locus with a worldwide distribution." (Letter) Brain 127: e7.
7. Lee, Y.C. et al. (2012) "Mutations in KCND3 cause spinocerebellar ataxia type 22." Ann. Neurol 72: 859-869.
8. Lindholm, D. et al. (2006) "ER stress and neurodegenerative diseases" Cell Death and Differentiation 13, 385-392.
9. Goldberg, A.L. (2003) "Protein degradation and protection against misfolded or damaged proteins" Nature 426, 895-899.
10. Sadis, S. and Hightower L. E. (1999) "Unfolded Proteins Stimulate Molecular Chaperone Hsc70 ATPase by Accelerating ADP/ATP Exchange" Biochemistry 31, 9406-9412.
11. Wyllie, A. H. et al. (1980) "Cell Death: The Significance of Apoptosis" International Review of Cytology 68, 251-306.
12. Mollereau, B. and Ma, D. (2014) "The p53 control of apoptosis and proliferation: lessons from Drosophila" Apoptosis 19, 1421-1429.
13. Sergio, C. et al. (2011) "The ER stress factor XBP1s prevents amyloid-beta neurotoxicity." Human Molecular Genetics 2144-2160.
14. Aric, L. D. et al. (2010) "Immunofluorescent Staining of Drosophila Larval Brain Tissue." Cold Spring Harb press pdb.prot5460.
15. Charlotte, G. et al. (2018) "Activation of the endoplasmic reticulum stress sensor IRE1α by the vaccine adjuvant AS03 contributes to its
immunostimulatory properties" Npjvaccines 3:20
16. Huang, H. W. et al. (2017) "The requirement of IRE1 and XBP1 in resolving physiological stress during Drosophila development" Cell Science 130, 3040-3049.
17. Warrick, J. M. et al. (1999) "Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70" Nature Genetics 23, 425–428.
18. Velazquez and Lindquist. (1984) "hsp70: Nuclear concentration during environmental stress and cytoplasmic storage during recovery" Cell 36, 3, 655-662.
19. Muchowski, P. J. et al. (2000) "Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils" PNAS 97 (14), 7841-7846.
20. Gao, X. et al. (2015) "Human Hsp70 Disaggregase Reverses Parkinson’s-Linked a-Synuclein Amyloid Fibrils" Molecular Cell 59, 781-793.
21. Joglekar, P.A. and Hay J.C. (2004) "Evidence for regulation of ER/Golgi SNARE complex formation by hsc70 chaperones" European Jornal of Cell Biology 84, 529-542.
22. Wang, W. et al. (2004) "Role of plant heat-shock proteins and
molecular chaperones in the abiotic stress response" Trends in Plant Science 9, 5, 244-252.