研究生: |
林孟儒 Lin, Meng-Ju |
---|---|
論文名稱: |
選擇性二氧化矽包覆金奈米棒之製備與螢光增強效應研究 The Study of Fluorescence Enhancement Effect on Side Selective Silica Coated Gold Nanorods |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 金奈米棒 、表面電漿共振 、金屬螢光增強 |
英文關鍵詞: | Metal-enhanced fluorescence, Gold nanorods, LSPR |
DOI URL: | https://doi.org/10.6345/NTNU202202031 |
論文種類: | 學術論文 |
相關次數: | 點閱:235 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同長寬比3.5以及4.6之金奈米棒(其吸收波長分別是750nm和890nm),包覆一層二氧化矽於側邊上,並露出兩端點,形成一種類似“熱狗”的構型,探討其應用於螢光增強之效應。由於侷域化表面電漿共振的現象,金奈米棒可以增強螢光分子的螢光放光強度,尤其是金奈米棒的端點,可以提供較高的電場環境,因此端點上的螢光分子能有較高的螢光增強倍率。
在不同長寬比之金奈米棒的螢光增強測試中,以較長之金奈米棒的螢光增強倍率最佳。相較於長寬比為3.5的金奈米棒的螢光增強倍率(最高倍率為2.81倍),長寬比4.6的金奈米棒可以有效增強螢光訊號至6.81倍。長度較長之金奈米棒之所以能有較高的增強倍率,是因為較長的金奈米棒端點能提供更強的電場環境,使得螢光分子與金奈米棒產生較強的電磁耦合現象,得到強度較強的螢光放光。然而利用二氧化矽選擇性包覆在金奈米棒上的特性,使得螢光分子能集中在金奈米棒的端點上,得到最大的螢光增強效果。
In this study, the fluorescence enhancement effects of hot dog shaped Au nrs with different aspect ratios of 3.5 and 4.6 coated with a silica layer on the lateral side to expose the two endpoints were studied. Owing to the localized surface plasmon resonance (LSPR) phenomenon of the Au nrs, light intensity of the adjacent fluorescent molecules can be either enhanced or quenched within a certain controlled distance. At the endpoint of the Au nrs where a higher electric field environment can be aroused, the fluorophore with a suitable distance from the metal surface can have an increased excitation and radiative decay rate, leading to the higher fluorescence intensity.
In this study, IR-800-conjugated streptavidin was used as the fluorophore and thiolated-PEG was used as the spacer to control the distance. Comparing the fluorescence enhancement results of dye-conjugated Au nrs with aspect ratios of 3.5 and 4.6, the fluorescence intensities was increased from 2.8 to 6.8 folds. Because of the higher local electric fields at endpoints of the longer Au nrs, the stronger electromagnetic coupling with IR-800 molecules result in an increased fluorescence intensity. Utilizing the side selectively covered silica on the Au nrs, the fluorophores can be confined on the endpoint in order to get the maximum fluorescence enhancement effect.
1. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A., “Dip-Pen” Nanolithography. Science 1999, 283 (5402), 661.
2. Yao, B. D.; Chan, Y. F.; Wang, N., Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81 (4), 757-759.
3. Ye, Q.; Liu, P. Y.; Tang, Z. F.; Zhai, L., Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. Vacuum 2007, 81 (5), 627-631.
4. Sharda, T.; Rahaman, M. M.; Nukaya, Y.; Soga, T.; Jimbo, T.; Umeno, M., Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diam. Relat. Mater. 2001, 10 (3), 561-567.
5. Hsu, K. F.; Tsay, S. Y.; Hwang, B. J., Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem. 2004, 14 (17), 2690-2695.
6. Yan, L.; Yu, R.; Chen, J.; Xing, X., Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution. Cryst. Growth Des. 2008, 8 (5), 1474-1477.
7. Reverchon, E., Supercritical antisolvent precipitation of micro- and nano-particles. J. Supercrit. Fluids 1999, 15 (1), 1-21.
8. Cozzoli, P. D.; Kornowski, A.; Weller, H., Colloidal Synthesis of Organic-Capped ZnO Nanocrystals via a Sequential Reduction−Oxidation Reaction. J. Phys. Chem. B 2005, 109 (7), 2638-2644.
9. Chen, C. L.; Kuo, L. R.; Chang, C. L.; Hwu, Y. K.; Huang, C. K.; Lee, S. Y.; Chen, K.; Lin, S. J.; Huang, J. D.; Chen, Y. Y., In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials 2010, 31 (14), 4104-4112.
10. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J., Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11 (2), 666-671.
11. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-97.
12. Zhang, Y.; Aslan, K.; Previte, M. J. R.; Geddes, C. D., Metal-enhanced S2 fluorescence from azulene. Chem. Phys. Lett. 2006, 432 (4–6), 528-532.
13. Strobbia, P.; Languirand, E.; Cullum, B. M., Recent advances in plasmonic nanostructures for sensing: a review. Opt. Eng. 2015, 54 (10), 100902-100902.
14. Zhang, J.; Lakowicz, J. R., Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt. Express 2007, 15 (5), 2598-2606.
15. Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R., Enhanced Fluorescence Images for Labeled Cells on Silver Island Films. Langmuir 2008, 24 (21), 12452-12457.
16. Hsieh, Y. P.; Liang, C. T.; Chen, Y. F.; Lai, C. W.; Chou, P. T., Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites. Nanotechnology 2007, 18 (41), 415707.
17. Luchowski, R.; Shtoyko, T.; Matveeva, E.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I., Molecular Fluorescence Enhancement on Fractal-Like Structures. Appl. Spectrosc. 2010, 64 (6), 578-583.
18. Luchowski, R.; Matveeva, E. G.; Shtoyko, T.; Sarkar, P.; Patsenker, L. D.; Klochko, O. P.; Terpetschnig, E. A.; Borejdo, J.; Akopova, I.; Gryczynski, Z.; Gryczynski, I., Single Molecule Immunoassay on Plasmonic Platforms. Curr. Pharm. Biotechno. 2010, 11 (1), 96-102.
19. Fu, Y.; Zhang, J.; Lakowicz, J. R., Plasmon-Enhanced Fluorescence from Single Fluorophores End-Linked to Gold Nanorods. J. Am. Chem. Soc. 2010, 132 (16), 5540-5541.
20. Gabudean, A. M.; Focsan, M.; Astilean, S., Gold Nanorods Performing as Dual-Modal Nanoprobes via Metal-Enhanced Fluorescence (MEF) and Surface-Enhanced Raman Scattering (SERS). J. Phys. Chem. C 2012, 116 (22), 12240-12249.
21. Zhang, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R., Dye-Labeled Silver Nanoshell−Bright Particle. J. Phys. Chem. B 2006, 110 (18), 8986-8991.
22. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensor. Actuat. B-Chem. 2014, 195, 332-351.
23. Zijlstra, P.; Paulo, P. M. R.; Orrit, M., Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotchnol. 2012, 7 (6), 379-382.
24. Kim, F.; Song, J. H.; Yang, P., Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc. 2002, 124 (48), 14316-14317.
25. Yu; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 1997, 101 (34), 6661-6664.
26. Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15 (10), 1957-1962.
27. Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T., Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews 2011, 2, 5883.
28. Zhao, L.; Kim, T. H.; Ahn, J. C.; Kim, H. W.; Kim, S. Y., Highly efficient "theranostics" system based on surface-modified gold nanocarriers for imaging and photodynamic therapy of cancer. J. Mater. Chem. B 2013, 1 (42), 5806-5817.
29. Wang, F.; Cheng, S.; Bao, Z.; Wang, J., Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem. Int. Edit. 2013, 52 (39), 10344-8.
30. Feng, A. L.; You, M. L.; Tian, L.; Singamaneni, S.; Liu, M.; Duan, Z.; Lu, T. J.; Xu, F.; Lin, M., Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers. Sci. Rep. 2015, 5, 7779.