Basic Search / Detailed Display

Author: 吳仁家
Jen-Chia Wu
Thesis Title: 金奈米棒SPR在有機溶劑中的化學位移偵測及金與硫化鎘包覆結構中SPR引發螢光增強之探討
Spectral-Shift Detection of Organic Solvents with Plasma Resonance of Gold Nanorods and Surface Plasmon Induced Photoluminescence Enhancement on Au@CdS Core-Shell Nanostructure
Advisor: 陳家俊
Chen, Chia-Chun
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2005
Academic Year: 93
Language: 中文
Number of pages: 61
Keywords (in Chinese): 表面電漿共振硫化鎘
Keywords (in English): gold, SPR, CdS
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 423Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 摘 要
    PARTⅠ
    就我們所知的文獻當中,我們在研究中發現的金奈米棒在不同的有機溶劑中的表面電漿共振吸收變化,是首度在實驗中被觀察到。我們成功利用簡單的靜電作用,將水相的金奈米棒相轉移到有機相當中。並且在研究當中我們發現金奈米棒的長軸最大吸收波長,隨不同有機溶液的折射率的改變呈線性關係,此結果與我們所提出的理論是吻合的。這樣的結果表示出,金奈米棒可被用來作為環境介質介電常數偵測的新型感測材料。
    PARTⅡ
    我們成功合成出Au@CdS殼層包覆結構。在吸收光譜及螢光光譜的測量中,我們可看到金奈米粒子與硫化鎘的特性吸收及放光光譜,並且透過分析式電子顯微鏡的元素分析與結構鑑定得以確定其殼層結構與組成成分。這樣的包覆結構合成主要是在探討,金奈米粒子表面電漿共振效應引發的光學增強效應。實驗中,比較Au@CdS殼層包覆結構與CdS的螢光光譜,發現Au@CdS殼層包覆結構有較強的放光。此可能是因為金的表面電漿共振帶與CdS放光位置靠近,造成CdS放光的增強。此外,亦有可能是金奈米粒子表面電漿共振使CdS電子電洞的結合率變快,造成螢光上的增強。

    Abstract
    PARTⅠ
    We have reported the first observation, to our knowledge, of localized plasmon resonance of gold nanorods in different solvents. In the experiments,we have successfully transfered gold nanorods from aqueous solutions into usual organic media by the use of the static electric interaction.The experimental data show a simple relation existing between the longitudinal SPR wavelength and the refractive index of the solvent, which is consistent with the theoretical predication. This result indicates that gold nanorods can be used as a novel sensitive detector to extract the optical properties of surrounding dielectric media if the aspect ratio and the ligand shell thickness are known.
    PARTⅡ
    In our studies,we have successfully synthesized the Au@CdS core-shell nanocrystals. UV-Vis absorption and fluorescence spectra were measured to gain an insight into the optical properties of the Au@CdS core@shell nanocrystals.The spectra showed the results similar to the typical UV-Vis absorption and fluorescence spectra of gold and CdS nanocrystals. Analytical transmission electron microscopy (AEM) was used in conjunction with energy dispersive spectroscopy (EDS) to verify the core-shell compositions and the structure.The Au@CdS core-shell structure was synthesized to realize the effect of surface plasmon induced optical enhancement. In the experiments,compared to the CdS nanoparticles, the Au@CdS core-shell nanostructure exhibited much stronger and sharper blue and red emissions. In our opinions,the enhancement of PL emission presumably results from the energy transfer from the collection of electrons around the Au particles surface to the neighboring CdS nanocrystals.Otherwise,SPR may also cause the increase of the electron-hole recombination rate in the CdS thus enhancing the emission intensity.

    總目錄 總目錄………………………………………………………………… Ⅰ 中文摘要……………………………………………………………… Ⅲ 英文摘要……………………………………………………………… Ⅳ 圖目錄 …………………………………………………………………Ⅵ 第一章 緒論……………………………………………………………01 1-1序 言………………………………………………………………01 1-2奈米材料簡介………………………………………………………02 1-3奈米材料之合成……………………………………………………04 1-4金奈米粒子的簡介…………………………………………………07 1-4-1金奈米粒的源起 ………………………………………………07 1-4-2金奈米粒子表面電漿共振效應 ………………………………07 1-4-3金奈米粒子表面電漿共振效應與形狀的關係 ………………08 1-4-4金奈米棒的合成簡介 …………………………………………10 1-4-5金奈米材料在化學偵測上的應用 ……………………………12 1-4-6金奈米材料在發光材料上的應用 ……………………………15 第二章 金奈米棒SPR在有機溶劑中的化學位移偵測 ……………17 2-1研究動機……………………………………………………………17 2-2實驗藥品與儀器……………………………………………………19 2-2-1藥品……………………………………………………………19 2-2-2 儀器 …………………………………………………………19 2-3 實驗步驟 …………………………………………………………20 2-3-1金奈米棒的合成…………………………………………………20 2-3-2金奈米棒的相轉移………………………………………………22 2-3-3金奈米棒在不同有機溶劑中SPR之化學位移偵測 ……………22 2-4結果與討論…………………………………………………………23 2-4-1金奈米棒的合成與鑑定…………………………………………23 2-4-2金奈米棒的相轉移探討…………………………………………24 2-4-3金奈米棒在不同介質中光譜與折射率的關係…………………25 第三章 金與硫化鎘包覆結構之合成…………………………………30 3-1研究動機與目的……………………………………………………30 3-2實驗藥品與儀器……………………………………………………31 3-2-1藥品……………………………………………………………31 3-2-2儀器 ……………………………………………………………31 3-3實驗步驟……………………………………………………………32 3-3-1硫化鎘奈米粒子(CdS)之合成步驟 ……………………32 3-3-2金與硫化鎘核殼層(core-shell)結構(Au@CdS)合成步驟 ………………………………………………………………………… 33 3-4結果與討論…………………………………………………………35 3-4-1 CdS及Au@CdS合成之探討與鑑定………………………………35 3-4-2 CdS及Au@CdS的放光光譜探討…………………………………36 第四章 結 論 ………………………………………………………38 未 來 展 望……………………………………………………………40 參 考 文 獻……………………………………………………………55

    參考文獻:
    1.Hertel, T.; Moos, G. Phys. Rev. Lett. 1999, 84, 5002.
    2.Brus, L. E. J. Phys. Chem. 1994, 98, 3575.
    3.Brus, L. E. J. Chem. Phys. 1984, 80, 4403.
    4.(a) Rupp, J.; Birringer, R. Phys. Rev. 1987, B36, 7888. (b) Hellstren,E.; Fecht, H.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1989, 65, 305.
    5.Wang, Z. H.; Choi, C. J.; Kim, B. K.; Kim, J. C.; Zhang, Z. D. J. AlloyCompd. 2003, 351, 319.
    6.Gleiter, H. Prog. Mater. Sci. 1989, 32, 223.
    7.(a) Alivisatos, A. P. Science 1996, 271, 933. (b) Chen, C. C.; Herhold,A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
    8.Glinka, Y. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.; Tolk, N. H. Phys. Rev. B 2001, 64, 085421-1.
    9.(a) Evans, B. L.; Young, P. A. Proc. R. Soc. Lond. Ser. A 1967, 298,74. (b) Dingle, R. Festkrperprobleme XV 1975. (c) Yoffe, A. D. Adv. Phys. 1993, 42, 173.
    10.Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
    11.Buhro, W. E.; Colvin, V. L. Nature Materials 2003, 2, 138.
    12.王崇人; 科學發展月刊 2002, 354, 48.
    13.Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
    14.(a) Han, W. Q.; Fan, S. S.; Li, Q. Q.; Hu, Y. D. Science 1997, 277, 1287. (b) Chen, C. C.; Yeh, C. C. Adv. Mater. 2000, 12, 738.
    15.(a) Charles J. Brumlik and Charles R. Martin J. Am. Chem. SOC. 1991, 113, 3174-3175 (b) Martin, C. R. Science 1994, 266, 1961. (c) Pileni, M. P. Nature Materials 2003, 2, 145.
    16.Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.
    17.(a) Steigrwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Korten, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. J. Am. Chem. Soc. 1988, 110, 3046. (b) Alivisatos, A. P.; Harris, T. D.; Carroll, D. J.; Steigrwald, M. L.; Brus, L. E. J. Chem. Phys. 1989, 90, 3463
    18.Murrary, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    19.Peng, X.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    20.Diggel, J. W.; Downie, T. C.; Goulding, C. W. Chem. ReV. 1969, 69, 365.
    21.Faraday , M., Phil. Trans. R. Soc., 1857, 147, 145.
    22.Turkevich , J., Stevenson , P. C., 19 Hillier, J., Discuss. Faraday Soc., 1951, 11, 55.
    23.Stephan Link and M. A. El-Sayed Int.Reviews in Physical Chemistry , 2000, 19, 409
    24.Papavassiliou, G. C. Prog. Solid State Chem. 1980, 12, 185.
    25.Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem.B 1997, 101, 6661.
    26.Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065.
    27.Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001,13, 1389.
    28.Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617.
    29.Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
    30.Franklin Kim, Jae Hee Song, and Peidong Yang J. AM. CHEM. SOC. 2002, 124, 14316
    31.Susie Eustis, Hsan-Yin Hsu, and Mostafa A. El-Sayed J. Phys. Chem. B, 2005, 109, 4811
    32.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-1081.
    33.Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc.1998, 120, 1959-1964
    34.Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. J. Phys. Chem. B 2004, 108, 13963-13971
    35.Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B 2000, 104, 564.
    36.M. Moskovits, I. Srnov-Šloufov, B. Vlčkov, J. Chem. Phys. 2002, 116, 10435
    37.D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 2002, 80, 3679.
    38.N. Flidj, J. Aubard, and G. Lvi, Phys. Rev. B 2002, 65, 075419.
    39.N. Flidj, J. Aubard, G. Lvi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 2003, 82, 3095
    40.A. Brioude, J. Bellessa, S. Rabaste, B. Champagnon, L. Sphanel, J. Mugnier, and J. C. Plenet, J. Appl, Phys. 2004, 95, 2744
    41.N. E. Hecker, R. A. Hpfer, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 1999, 75, 1577
    42.K. Okamoto, I. Niki, A. Shvarster, Y. Narukawa, T. Mukai, and A. Scherer, Natural materials 2004, 3, 601
    43.A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, Phys. Rev. B 2002, 66, 153305
    44.Lee, J.; Govorov, A. O.; Dulka, J.; Kotov, N. A. Nano Lett. 2004; 4, 2323-2330
    45.K. Ishikawa and T. Okubo, Appl. Phys. Lett. 2003, 83, 2536
    46.S. Wedge, J. A. E. Wasey, W. L. Barnes, I. Sage, Appl. Phys. Lett. 2004, 85, 182
    47.A. Neogi and H. Morkoc, Nanotechnology 2004, 15, 1252
    48.J. Bellessa, C. Bonnand, J. C. Plenet, J.Mugnier, Phys. Rev. Lett.2004, 93, 036404
    49.Taleb Mokari, Eli Rothenberg, Inna Popov, Ronny Costi, and Uri Banin Science, 2004, 304, 1787-1790
    50.Martin. C. R. Chem. Mater. 1996, 8, 1739.
    51.Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russel, T. P. Science 2000, 290, 2126
    52.(a) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. (b) Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409. (c) M. A. El-Sayed Acc. Chem. Res. 2001, 34, 257.
    53.(a) Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073. (b) Gans, R. Ann. Phys. 1915, 47, 270. (c) Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. 2004, 108, 5882. (d) Lal, S.; Westcott, S. L.; Taylor, R. N.; Jackson, J. B.; Nordlander, P.; Halas, N. J. J. Phys. Chem. B 2002, 106, 5609.
    54.Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1983.
    55.(a) Kittel, C. Introduction to Solid State Physics, 6th ed.; Wiley: Singapore, 1988. (b) Johnston, P. B.; Christy, R. W. Phys. Rev. B 1972, 8, 4370.
    56.Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B 2000, 104, 564.
    57.Snnichsen, C.; Franzl, T.; Wilk, T.; G. von Plessen, T.; Feldmann, J.; Wilson, O.; Mulvaney, P. Phys. Rev. Lett. 2002, 88, 77402
    58.W.William Yu and Xiaogang Peng Angew.Chem.Int.Ed.2002, 41, 2368
    59.Mathias Brust, Merryl Walker, Donald Bethell, David J.Schiffrin and Robin Whyman J.Chem.Soc.Chem.Commun., 1994, 801

    無法下載圖示
    QR CODE