研究生: |
陳仕忠 Shih-Jhong Chen |
---|---|
論文名稱: |
研讀isospectral flow線性代數演算法及其穩定性分析 The study of an isospectral flow for linear algebra algorithms and its stability analysis |
指導教授: |
謝世峰
Shieh, Shih-Feng |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | The generalized Toda flow 、QR演算法 、QR分解 、isospectral flow 、穩定性分析 |
英文關鍵詞: | The generalized Toda flow, QR algorithm, QR decomposition, isospectral flow, stability analysis |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章裡,主要是探討QR algorithm以及isospectral flow,在文章的一開始我們會先簡介傳統的QR method以及從離散型中建構單變數的QR algorithm;接著會介紹一些QR algorithm的性質以及其對應的一些微分方程。
其實在一般常見的分解都有這種isospectral的性質,因此我們會介紹isospectral flow需要滿足哪些微分方程,以及isospectral flow的
Similarity Prop.、Decomposition Prop.以及Reversal Prop.
最後我們會討論 algorithm的穩定性以及收斂速度;我們在這篇文章中最主要的研究是用矩陣的內積定義出isospectral flow的矩陣運算,這個isospectral flow收斂的條件和 algorithm相似,然而收斂速度比 algorithm還要更快。
In this thesis, we study the isospectral flows of matrix valued differential equations. First, we introduce some properties of the QR algorithm and its corresponding differential equations, known as the Toda flow, which is generated to complex-valued, full and nonsymmetric matrices. The next, we consider the genetated abstract g1g2 decomposition which is corresponding to the isospectral
flow. Finally, we expand the differentiable function f(X) by using Taylor series and discuss the stability analysis of QR algorithm by solving eigenvalue problems.
We define matrix inner product to find the isospectral
flow k(X). We also study the stability for this isospecial
flow. In this thesis, our main contribution is to find
the operation of the isospectral flow which is better than QR flow in convergence.
[1] M. T. Chu. The generalized Toda flow, the QR algorithm and center manifold theory. SIAM J. Algebraic Discrete Method, 5:pp.187-201., 1984.
[2] M. T. Chu. On the global convergence of the Toda lattice for real mormal matrices and its application to the eigenvalue problem. SIAM J. Math. Anal., 15:pp.98-104., 1984.
[3] M. T. Chu. Asymptotic analysis of the Toda lattice on diagonalizable matrices.
Nonlinear Anal. TMA,, 9:pp.193-201., 1985.
[4] M. T. Chu. Linear algebra algorithms as dynamical systems. Acta Numerica, pages pp.001-086, 2008.
[5] M. T. Chu and L. K. Norris. Isospectral flows and abstract matrix factorization.
SIAM J. Numer. Anal, 25(6):pp.1383-1391., 1988.
[6] P. Deift, T. Nanda, and C. Tomei. Differential equations for the symmetric eigenvalue problem.
SIAM J. Numer. Anal, 20:pp.1-22., 1983.
[7] H. Flaschka. Discrete and periodic illustrations of some aspects of the inverse method, in Dynamical System, Theory and Applications. Lecture Notes in Physics,38. Springer-Verlag, Berlin, 1975.
[8] G. F. Francis. The QR transformation, a unitary analogue to the LR transformation.
Comput. J., 4:pp.265-271., 1961.
[9] T. Nadna. Isospectral flows on band matrices. Ph.D. thesis. New York University, New York, 1982.
[10] B. Patlett. The Symmetric Eigenvalue Problem.
Prentice-Hall, Englewood Cliffs, NJ, 1980.
[11] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.
[12] H. Rutishauser. Der quotienten-dierenzen algorithmus. Z. Angew. Math. Physik,5:pp.233-251., 1954.
[13] W. W. Symes. The QR algorithm and scattering for the nite nonperidoic Toda lattice.
Physica, 4D:pp.275-280., 1982.
[14] D. S. Watkkins. Experience with the Toda flow method of calculating eigenvalues.
Department of Mathematics Technical Report TR-82-1, Washington, 1982.
[15] D. S. Watkkins. Understanding the QR algorithm. SIAM Rev., 24:pp.427-440.,1982.
[16] D. S. Watkkins. Isospectral flows.
SIAM Rev., 26:pp.379-391., 1984.