簡易檢索 / 詳目顯示

研究生: 張哲維
Chang, Jer-Wei
論文名稱: 基因體甲基化圖譜與抑癌基因甲基化參與肺癌形成之機制及臨床應用探討
Genome-Wide Methylation Profiling and Candidate Gene Methylation Spectrum in Lung Cancer: In Relation to Gene Expression and Clinical Significance
指導教授: 蘇銘燦
Su, Ming-Tsan
王憶卿
Wang, Yi-Ching
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 116
中文關鍵詞: 肺癌基因體甲基化圖譜啟動子染色質結構抑癌基因
英文關鍵詞: lung cancer, genome-wide methylation profile, promoter chromatin structure, tumor suppressor gene
論文種類: 學術論文
相關次數: 點閱:409下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症一般認為與基因體與外顯基因體發生變異有關,而在外顯基因體研究中,基因啟動子過度甲基化是最主要造成基因不活化的原因之一。抑癌基因的啟動子過度甲基化,會造成抑癌基因不活化,進而導致癌症的發生。為了鑑定在癌症基因體中,過度甲基化的區域所包含的可能新穎抑癌基因,本研究利用差異甲基化雜交法(differential methylation hybridization)的微陣列分析及染色質免疫沈澱晶片分析法(chromatin immunoprecipitation -on -chip),針對30位非小細胞肺癌病人及數個肺癌細胞株進行基因體的過度甲基化區域及染色質鬆緊狀態研究。結果發現在不同的肺癌子類型及肺癌分期,有特定的基因被過度甲基化,這些過度甲基化基因也許可以作為早期偵測及預測癌症發展的生物指標。
    此外,在肺癌病人的差異甲基化雜交法的結果中,本研究發現一個與抗細胞增生、細胞靜止與細胞分化的COL14A1基因啟動子有過度甲基化的情形,而且在染色質免疫沈澱晶片分析法中,COL14A1啟動子的染色質區域相較於正常肺細胞,肺癌細胞呈現較為緊密的狀態。此外,本研究發現有60.4%的非小細胞肺癌病人有COL14A1基因啟動子過度甲基化的情形,而且其mRNA及蛋白質分別有50.0%及43.9%的低表達情形;另外本研究也發現COL14A1基因啟動子過度甲基化與晚期肺癌病人有統計相關。這些驗證實驗顯示外顯基因體研究是尋找癌症相關基因的有效工具,COL14A1基因及其蛋白變異參與肺癌的分子機制將進一步由細胞及動物模式研究來鑑定。
    在本實驗室先前對基因體缺失的研究中,發現在染色體3p21的區域有高達50%以上的基因座缺失情形。此外,在差異甲基化雜交法的結果中,也發現位於染色體3p21.3的RASSF1基因在肺癌早期的病人中有過度甲基化情形,因此染色體3p21.3區域的基因不活化對於台灣地區肺癌形成扮演一個非常重要的角色。而RASSF1A及BLU這二個頭尾相連的抑癌基因位於染色體3p21.3的區域,由於這二個基因位置非常靠近,因此本研究預測這二個基因的表達及啟動子過度甲基化具有區域效應,也就是此二基因的表達及基因甲基化具有一致性。如果沒有區域效應,可能是因為RASSF1A及BLU基因之間具有絕緣子(insulator)構造所導致。首先,本研究針對32位肺癌病人,利用特定序列甲基化微陣列分析法(methylation- specific oligonucleotide microarray)及反轉錄聚合連鎖反應,找出會影響RASSF1A及BLU基因mRNA表達的關鍵轉錄CpG位置。同時也發現在RASSF1A基因的關鍵轉錄CpG位置上,有E2F1這個轉錄因子的結合,當這些位置被過度甲基化時,會使E2F1無法結合在RASSF1A的啟動子上,導致RASSF1A基因表達下降。此外,本研究發現RASSF1A及BLU這二個基因各自的關鍵轉錄 CpG位置的甲基化與各自基因的低轉錄與低轉譯有關;然而,這二個基因的甲基化狀態及基因表達卻沒有一致性,也就是沒有區域效應。利用免疫沈澱聚合連鎖反應(chromatin immunoprecipitation-PCR)證明CTCF蛋白結合在RASSF1A及BLU基因啟動子之間的絕緣子上,也利用亞硫酸鹽定序(bisulfite sequencing)發現在絕緣子兩端的甲基化不連續情形。所以CTCF也許提供了屏障效應導致這二個基因沒有所謂的區域效應。本研究找出了RASSF1A及BLU的關鍵轉錄CpG位置,這些位置的甲基化會影響基因的表達;同時也證明了CTCF結合在RASSF1A及BLU之間,使得這二個基因的表達沒有區域效應。本研究為首篇鑑定影響RASSF1A及BLU基因mRNA表達的關鍵轉錄CpG位置的報導,並提出絕緣子可以做為如染色體3p21基因群座(gene cluster)屏障效應的證據。

    Cancer is caused by the accumulation of both genetic and epigenetic changes. Promoter hypermethylation is one of the major epigenetic changes that cause gene inactivation. Aberrant promoter hypermethylation of CpG islands associated with tumor suppressor genes (TSGs) can lead to transcriptional silencing and result in tumorigenesis. The genomic regions with hypermethylation status may possess novel candidate TSGs. The present study used a microarray-based epigenome-wide methylation analysis called differential methylation hybridization (DMH) to identify the regions of hypermethylation and a chromatin immunoprecipitation (ChIP)-on-chip analysis to identify the regions of condensed or open chromatin in 30 non-small cell lung cancer (NSCLC) patients and several lung cell lines, and have successfully detected several cancer subtype- and stage-specific hypermethylated genes. They may serve as biomarkers for the early detection or prognosis prediction of lung cancer.
    Using DMH, this study identified promoter hypermethylation of the COL14A1 (collagen, type XIV, alpha 1) gene, which has cell anti-proliferative activity and plays a role in cell quiescence and differentiation. Using ChIP-on-chip, COL14A1 promoter region was shown to be in compact chromatin structure in cancer cell lines compared to normal cell line. In addition, 60.4% of 48 NSCLC patients showed COL14A1 promoter hypermethylation and coincided with low mRNA and protein expression. Moreover, COL14A1 promoter hypermethylation was significantly associated with late stage lung cancer patients. The present study provided evidence that epigenomic tools such as DMH and ChIP-on-chip can be used for identifyication of cancer-related genes such as COL14A1.
    In previous study of my laboratory, there was more than 50% of loss of heterozygosity in chromosome 3p21. In addition, RASSF1 promoter hypermethylation in chromosome 3p21.3 was shown in early stage patients of NSCLC in DMH data. Therefore, gene silencing in chromosome 3p21.3 is important for lung tumorigenesis in Taiwan. Tumor suppressor genes RASSF1A and BLU are two tandem head-to-tail genes located at 3p21.3. The current study hypothesized that there may be a regional effect on their gene expression and promoter methylation status. If not, then there may be an insulator between RASSF1A and BLU genes. This study first identified transcriptionally important CpG sites using the methylation-specific oligonucleotide microarray in relation to mRNA expression of RASSF1A and BLU genes in primary lung tumors. The data demonstrated that E2F1 bound to the transcriptionally important CpG sites in RASSF1A gene, and this transcriptional regulation was impaired when the targeted CpGs were hypermethylated. Both RASSF1A and BLU genes had their own transcriptionally important CpG regions. However, there was no correlation of methylation status between RASSF1A and BLU. Using chromatin immunoprecipitation-PCR (ChIP-PCR), CCCTC-binding factor (CTCF) was found to bind to insulator sequences located between these two genes. Bisulfite sequencing and ChIP-PCR revealed distinct methylation and chromatin boundaries separated by the CTCF binding domains. This study dissects for the first time the transcriptionally important CpG sites for both RASSF1A and BLU genes and demonstrates that CTCF binding to the insulator of BLU gene possesses a barrier activity within separate epigenetic domains of the juxtaposed BLU and RASSF1A loci in the 3p21.3 gene cluster region.

    Content Chinese abstract -------------------------------------- 1 English abstract -------------------------------------- 3 Study rationale --------------------------------------- 5 Literature review ------------------------------------- 8 I. The classifications of lung cancer ---------------- 8 II. Gene promoter hypermethylation and tumorigenesis - 9 III. Chromatin structure and gene expression status -- 11 IV. Alterations of genes in chromosome 3p21.3 involve in lung tumorigenesis ------------------------------------ 12 V. Methods for epigenetic alternation analysis ------- 14 Specific aims ----------------------------------------- 19 AIM 1: Epigenome-wide detection for hypermethylated CpG islands and chromatin profiling and their clinical association in lung cancer ------------------- 21 Purpose ---------------------------------------------- 22 Materials and Methods -------------------------------- 23 Results ---------------------------------------------- 28 Discussion ------------------------------------------- 30 AIM 2: Validated the cancer related genes and TSGs from DMH and ChIP-on-chip analysis, and characterization of their transcriptional important CpG sites in primary non-small cell lung cancer ------- 32 Purpose ---------------------------------------------- 33 Materials and Methods -------------------------------- 34 Results ---------------------------------------------- 41 Discussion ------------------------------------------- 49 References -------------------------------------------- 54 Tables and Figures ------------------------------------ 68 Appendices -------------------------------------------- 96

    References

    Agathanggelou A, Bieche I, Ahmed-Choudhury J, Nicke B, Dammann R, Baksh S et al. (2003a). Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer Res 63: 5344-5351.
    Agathanggelou A, Cooper WN, Latif F (2005). Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65: 3497-3508.
    Agathanggelou A, Dallol A, Zochbauer-Muller S, Morrissey C, Honorio S, Hesson L et al. (2003b). Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene 22: 1580-1588.
    Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20: 1509-1518.
    Aitchison A, Warren A, Neal D, Rabbitts P (2007). RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate 67: 638-644.
    Antequera F, Bird A (1993). Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90: 11995-11999.
    Antequera F, Boyes J, Bird A (1990). High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62: 503-514.
    Bains MS (1991). Surgical treatment of lung cancer. Chest 100: 826-837.
    Bannister AJ, Kouzarides T (2005). Reversing histone methylation. Nature 436: 1103-1106.
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72: 141-196.
    Belinsky SA (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4: 707-717.
    Beck S, Rakyan VK (2008). The methylome: approaches for global DNA methylation profiling. Trends Genet 24: 231-237.
    Bell AC, West AG, Felsenfeld G (1999). The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98: 387-396.
    Bell AC, West AG, Felsenfeld G (2001). Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science 291: 447-450.
    Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A et al. (1994). Sp1 elements protect a CpG island from de novo methylation. Nature 371: 435-438.
    Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691-699.
    Campanero MR, Armstrong MI, Flemington EK (2000). CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 97: 6481-6486.
    Chen CJ, Wu HY, Chuang YC, Chang AS, Luh KT, Chao HH et al. (1990). Epidemiologic characteristics and multiple risk factors of lung cancer in Taiwan. Anticancer Res 10: 971-976.
    Chen JT, Chen YC, Wang YC, Tseng RC, Chen CY (2002). Alterations of the p16(ink4a) gene in resected nonsmall cell lung tumors and exfoliated cells within sputum. Int J Cancer 98: 724-731.
    Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277: 1996-2000.
    Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24: 132-138.
    Cross SH, Charlton JA, Nan X, Bird AP (1994). Purification of CpG islands using a methylated DNA binding column. Nat Genet 6: 236-244.
    Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ et al. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58: 3455-3460.
    Dallol A, Agathanggelou A, Tommasi S, Pfeifer GP, Maher ER, Latif F (2005). Involvement of the RASSF1A tumor suppressor gene in controlling cell migration. Cancer Res 65: 7653-7659.
    Department of Health, The executive Yuan. Republic of China: Health Promotion and Protection. In Public Health in Taiwan Area, Republic of China. R. O. C. Press, Taipei, pp47-50, 2008.
    De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999). DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19: 7327-7335.
    Dimova DK, Dyson NJ (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810-2826.
    Donninger H, Vos MD, Clark GJ (2007). The RASSF1A tumor suppressor. J Cell Sci 120: 3163-3172.
    Ehnis T, Dieterich W, Bauer M, Lampe B, Schuppan D (1996). A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin). Exp Cell Res 229: 388-397.
    Eng C, Herman JG, Baylin SB (2000). A bird's eye view of global methylation. Nat Genet 24: 101-102.
    Engel N, Thorvaldsen JL, Bartolomei MS (2006). CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15: 2945-2954.
    Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001). The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309: 1189-1199.
    Fearon ER (1997). Human cancer syndromes: clues to the origin and nature of cancer. Science 278: 1043-1050.
    Filippova GN (2008). Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80: 337-360.
    Fischle W, Wang Y, Allis CD (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475-479.
    Fong KM, Sekido Y, Minna JD (1999). Molecular pathogenesis of lung cancer. J Thorac Cardiovasc Surg 118: 1136-1152.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89: 1827-1831.
    Gaszner M, Felsenfeld G (2006). Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7: 703-713.
    Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Robertson KD (2004). DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 318: 544-555.
    Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002). Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12: 158-164.
    Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM et al. (1995). Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55: 4531-4535.
    Gonzalgo ML, Liang G, Spruck CH, 3rd, Zingg JM, Rideout WM, 3rd, Jones PA (1997). Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57: 594-599.
    Goyal R, Reinhardt R, Jeltsch A (2006). Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34: 1182-1188.
    Gronbaek K, Hother C, Jones PA (2007). Epigenetic changes in cancer. APMIS 115: 1039-1059.
    Harada K, Toyooka S, Maitra A, Maruyama R, Toyooka KO, Timmons CF et al. (2002). Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21: 4345-4349.
    Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T (1991). A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88: 9523-9527.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93: 9821-9826.
    Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S et al. (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91: 9700-9704.
    Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al. (1995). Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525-4530.
    Hesson LB, Cooper WN, Latif F (2007). Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 26: 7283-7301.
    Hesson L, Bieche I, Krex D, Criniere E, Hoang-Xuan K, Maher ER et al. (2004). Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene 23: 2408-2419.
    Honorio S, Agathanggelou A, Schuermann M, Pankow W, Viacava P, Maher ER et al. (2003a). Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene 22: 147-150.
    Honorio S, Agathanggelou A, Wernert N, Rothe M, Maher ER, Latif F (2003b). Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene 22: 461-466.
    Hsu HS, Wen CK, Tang YA, Lin RK, Li WY, Hsu WH et al. (2005). Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res 11: 5410-5416.
    Huang TH, Laux DE, Hamlin BC, Tran P, Tran H, Lubahn DB (1997). Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res 57: 1030-1034.
    Huang TH, Perry MR, Laux DE (1999). Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8: 459-470.
    Ito M, Ito G, Kondo M, Uchiyama M, Fukui T, Mori S et al. (2005). Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in non-small cell lung cancer. Cancer Lett 225: 131-139.
    Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556-560.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. (2004). Cancer statistics, 2004. CA Cancer J Clin 54: 8-29.
    Jiang C, Pugh BF (2009). Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10: 161-172.
    Jones PA, Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415-428.
    Jones PA, Laird PW (1999). Cancer epigenetics comes of age. Nat Genet 21: 163-167.
    Kang S, Lee JM, Jeon ES, Lee S, Kim H, Kim HS et al. (2006). RASSF1A hypermethylation and its inverse correlation with BRAF and/or KRAS mutations in MSI-associated endometrial carcinoma. Int J Cancer 119: 1316-1321.
    Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J et al. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63: 3743-3746.
    Knudson AG (1996). Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122: 135-140.
    Ko YG, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K (2005). Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem 280: 9627-9634.
    Kohno T, Yokota J (1999). How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis 20: 1403-1410.
    Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A et al. (2000). Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet 9: 597-604.
    Kong LJ, Chang JT, Bild AH, Nevins JR (2007). Compensation and specificity of function within the E2F family. Oncogene 26: 321-327.
    Kurkjian C, Kummar S, Murgo AJ (2008). DNA methylation: its role in cancer development and therapy. Curr Probl Cancer 32: 187-235.
    Lai HC, Lin YW, Chang CC, Wang HC, Chu TW, Yu MH et al. (2007). Hypermethylation of two consecutive tumor suppressor genes, BLU and RASSF1A, located at 3p21.3 in cervical neoplasias. Gynecol Oncol 104: 629-635.
    Laird PW (2005). Cancer epigenetics. Hum Mol Genet 14 Spec No 1: R65-76.
    Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL et al. (2007). Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13: 832-838.
    Lin RK, Hsu CH, Wang YC (2007a). Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18: 1157-1164.
    Lin RK, Hsu HS, Chang JW, Chen CY, Chen JT, Wang YC (2007b). Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer 55: 205-213.
    Liu L, Baier K, Dammann R, Pfeifer GP (2007). The tumor suppressor RASSF1A does not interact with Cdc20, an activator of the anaphase-promoting complex. Cell Cycle 6: 1663-1665.
    Liu XQ, Chen HK, Zhang XS, Pan ZG, Li A, Feng QS et al. (2003). Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer 106: 60-65.
    Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS et al. (2001). High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61: 3877-3881.
    Luczak MW, Jagodzinski PP (2006). The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44: 143-154.
    Margueron R, Trojer P, Reinberg D (2005). The key to development: interpreting the histone code? Curr Opin Genet Dev 15: 163-176.
    Marsit CJ, Kim DH, Liu M, Hinds PW, Wiencke JK, Nelson HH et al. (2005). Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 114: 219-223.
    Martinez A, Walker RA, Shaw JA, Dearing SJ, Maher ER, Latif F (2001). Chromosome 3p allele loss in early invasive breast cancer: detailed mapping and association with clinicopathological features. Mol Pathol 54: 300-306.
    Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18: 333-334.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766-770.
    Minna JD, Sekido Y, Fong K, and Gazdar AF (1997). In: Cancer: Principles and Practice of Oncology, 5th edit. Devita Jr VT, Hellman S, and Rosenberg SA (eds). Lippincott: Philadelphia, pp. 849-57.
    Moggs JG, Goodman JI, Trosko JE, Roberts RA (2004). Epigenetics and cancer: implications for drug discovery and safety assessment. Toxicol Appl Pharmacol 196: 422-430.
    Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB et al. (2008). Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30: 755-766.
    Mountain CF (1997). Revisions in the International System for Staging Lung Cancer. Chest 111: 1710-1717.
    Mountain CF (2000). The international system for staging lung cancer. Semin Surg Oncol 18: 106-115.
    Mummaneni P, Walker KA, Bishop PL, Turker MS (1995). Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem 270: 788-792.
    Mund C, Beier V, Bewerunge P, Dahms M, Lyko F, Hoheisel JD (2005). Array-based analysis of genomic DNA methylation patterns of the tumour suppressor gene p16INK4A promoter in colon carcinoma cell lines. Nucleic Acids Res 33: e73.
    Nephew KP, Huang TH (2003). Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 190: 125-133.
    Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang XF, Dammann R, Pfeifer GP et al. (2002). The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene 21: 1381-1390.
    Pradhan S, Talbot D, Sha M, Benner J, Hornstra L, Li E et al. (1997). Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res 25: 4666-4673.
    Pützer BM (2007). E2F1 death pathways as targets for cancer therapy. J Cell Mol Med 11: 239-251.
    Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST et al. (2004). The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 23: 4793-4806.
    Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A et al. (2004). The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279: 29247-29254.
    Rami-Porta R, Crowley JJ, Goldstraw P (2009). The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg 15: 4-9.
    Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH et al. (2002). Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 245: 304-314.
    Riquelme E, Tang M, Baez S, Diaz A, Pruyas M, Wistuba, II et al. (2007). Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett 250: 100-106.
    Robertson KD (2001). DNA methylation, methyltransferases, and cancer. Oncogene 20: 3139-3155.
    Ruehl M, Erben U, Schuppan D, Wagner C, Zeller A, Freise C et al. (2005). The elongated first fibronectin type III domain of collagen XIV is an inducer of quiescence and differentiation in fibroblasts and preadipocytes. J Biol Chem 280: 38537-38543.
    Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991). Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48: 880-888.
    Sekido Y, Fong KM, Minna JD (1998). Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1378: F21-59.
    Shi H, Yan PS, Chen CM, Rahmatpanah F, Lofton-Day C, Caldwell CW et al. (2002). Expressed CpG island sequence tag microarray for dual screening of DNA hypermethylation and gene silencing in cancer cells. Cancer Res 62: 3214-3220.
    Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J (1996). Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 2: 912-917.
    Slansky JE, Farnham PJ (1996). Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol 208: 1-30.
    Solomon MJ, Varshavsky A (1985). Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82: 6470-6474.
    Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK et al. (2004). The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6: 129-137.
    Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R (2005). Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol 25: 3923-3933.
    Sun L, Hui AM, Kanai Y, Sakamoto M, Hirohashi S (1997). Increased DNA methyltransferase expression is associated with an early stage of human hepatocarcinogenesis. Jpn J Cancer Res 88: 1165-1170.
    Tamaru H, Selker EU (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277-283.
    Thiagalingam S, Foy RL, Cheng KH, Lee HJ, Thiagalingam A, Ponte JF (2002). Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol 14: 65-72.
    Tischoff I, Markwarth A, Witzigmann H, Uhlmann D, Hauss J, Mirmohammadsadegh A et al. (2005). Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer 115: 684-689.
    Tomizawa Y, Kohno T, Kondo H, Otsuka A, Nishioka M, Niki T et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin Cancer Res 8: 2362-2368.
    Tse C, Sera T, Wolffe AP, Hansen JC (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18: 4629-4638.
    Tseng RC, Chang JW, Hsien FJ, Chang YH, Hsiao CF, Chen JT et al. (2005). Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 117: 241-247.
    Tseng RC, Lee CC, Hsu HS, Tzao C, and Wang YC. (2009). Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients. Neoplasia (accepted)
    Tseng RC, Lin RK, Wen CK, Tseng C, Hsu HS, Hsu WH et al. (2008). Epigenetic silencing of AXIN2/betaTrCP and deregulation of p53-mediated control lead to wild-type beta-catenin nuclear accumulation in lung tumorigenesis. Oncogene 27: 4488-4496.
    Tzao C, Tsai HY, Chen JT, Chen CY, Wang YC (2004). 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer 40: 2175-2183.
    Ushijima T, Morimura K, Hosoya Y, Okonogi H, Tatematsu M, Sugimura T et al. (1997). Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci U S A 94: 2284-2289.
    Vos MD, Dallol A, Eckfeld K, Allen NP, Donninger H, Hesson LB et al. (2006). The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem 281: 4557-4563.
    Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275: 35669-35672.
    Vos MD, Martinez A, Elam C, Dallol A, Taylor BJ, Latif F et al. (2004). A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res 64: 4244-4250.
    Wang X, He C, Moore SC, Ausio J (2001). Effects of histone acetylation on the solubility and folding of the chromatin fiber. J Biol Chem 276: 12764-12768.
    Wang YC, Chen CY, Chen SK, Cherng SH, Ho WL, Lee H (1998). High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan. Cancer Res 58: 328-333.
    Wang YC, Lin RK, Tan YH, Chen JT, Chen CY (2005). Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol 23: 154-164.
    Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT et al. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111: 887-895.
    Wettenhall JM, Smyth GK (2004). limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20: 3705-3706.
    Witt O, Deubzer HE, Milde T, Oehme I (2009). HDAC family: What are the cancer relevant targets? Cancer Lett 277: 8-21.
    Wu CY, Tseng RC, Hsu HS, Wang YC, Hsu MT (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer 63: 360-367.
    Yan PS, Efferth T, Chen HL, Lin J, Rodel F, Fuzesi L et al. (2002). Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 27: 162-169.
    Yan PS, Perry MR, Laux DE, Asare AL, Caldwell CW, Huang TH (2000). CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res 6: 1432-1438.
    Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW et al. (2003). Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res 63: 6178-6186.
    Yan PS, Wei SH, Huang TH (2004). Methylation-specific oligonucleotide microarray. Methods Mol Biol 287: 251-260.
    Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA et al. (2007). Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13: 2046-2053.
    Yau WL, Lung HL, Zabarovsky ER, Lerman MI, Sham JS, Chua DT et al. (2006). Functional studies of the chromosome 3p21.3 candidate tumor suppressor gene BLU/ZMYND10 in nasopharyngeal carcinoma. Int J Cancer 119: 2821-2826.
    Yi Lo PH, Chung Leung AC, Xiong W, Law S, Duh FM, Lerman MI et al. (2006). Expression of candidate chromosome 3p21.3 tumor suppressor genes and down-regulation of BLU in some esophageal squamous cell carcinomas. Cancer Lett 234: 184-192.
    Zhang B, Chambers KJ, Leprince D, Faller DV, Wang S (2009). Requirement for chromatin-remodeling complex in novel tumor suppressor HIC1-mediated transcriptional repression and growth control. Oncogene 28: 651-661.
    Zhang D, Bai Y, Ge Q, Qiao Y, Wang Y, Chen Z et al. (2006). Microarray-based molecular margin methylation pattern analysis in colorectal carcinoma. Anal Biochem 355: 117-124.
    Zhang Y, Reinberg D (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343-2360.

    下載圖示
    QR CODE