簡易檢索 / 詳目顯示

研究生: 戴伯儒
Dai, Bo-Ru
論文名稱: Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds
Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds
指導教授: 陳瑞堂
Chen, Jui-Tang
口試委員: 林惠娥
Lin, Huey-Er
邱鴻麟
Chiu, Hung-Lin
陳瑞堂
Chen, Jui-Tang
口試日期: 2022/01/11
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 72
英文關鍵詞: Christoffel symbols, Scalar curvatures, Riemannian manifold, Trüdinger constant
DOI URL: http://doi.org/10.6345/NTNU202200693
論文種類: 學術論文
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis calculates the Scalar curvature by expanding Christoffel symbols, so we get the relation about Scalar curvatures under conformal metrics. Then, we classify two-dimension Riemannian manifolds by Euler number and discuss the existence of the conformal metrics in the different Euler numbers. Finally, in the case of χ(M ) > 0, we give more details about the Trüdinger constant and see the possibilities for the different Trüdinger constants.

    1 Preliminary Calculation 1 2 Two-dimension case 7 3 The Detail of the Theorem by Moser 30

    [1] R. Schoen and S.-T. Yau. Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.
    [2] M. A. Golberg. The derivative of a determinant. The American Mathematical Monthly, 79(10):1124–1126, 1972.
    [3] C. V. Pao. Nonlinear parabolic and elliptic equations. Plenum Press, New York, 1992.
    [4] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
    [5] Balmohan V. Limaye. Bounded Linear Maps, pages 75–118. Springer Singapore, Singapore, 2016.
    [6] Olivier Druet, Emmanuel Hebey, and Frédéric Robert. Blow-up theory for elliptic PDEs in Riemannian geometry, volume 45 of Mathematical Notes. Princeton University Press, Princeton, NJ, 2004.
    [7] Richard L. Wheeden and Antoni Zygmund. Measure and integral. Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2015. An introduction to real analysis.
    [8] Walter Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
    [9] Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Mono-graphs in Mathematics. Springer-Verlag, Berlin, 1998.
    [10] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
    [11] Jerry L. Kazdan and F. W. Warner. A direct approach to the determination of gaussian and scalar curvature functions. Inventiones mathematicae, 28(3):227–230, Oct 1975.
    [12] Jerry L. Kazdan and F. W. Warner. Existence and conformal deformation of metrics with prescribed gaussian and scalar curvatures. Annals of Mathematics, 101(2):317–331, 1975.
    [13] Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.
    [14] J. Moser. A sharp form of an inequality by N. Trüdinger. Indiana Univ. Math. J., 20:1077–1092, 1970/71.
    [15] Robert Osserman. The isoperimetric inequality. Bull. Amer. Math. Soc., 84(6):1182–1238, 1978.

    下載圖示
    QR CODE