簡易檢索 / 詳目顯示

研究生: 張鈞智
Chun-Chih Chang
論文名稱: 以理論計算的方式研究乙炔在金屬Fe(111)和W(111)以及Fe-W(111)雙金屬表面的氫化反應
Theoretical Calculations to Study Acetylene Hydrogenation Reactions on Fe(111), W(111) and Fe-W(111) Bimetallic Surfaces
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 89
中文關鍵詞: DFT計算乙炔氫化選擇性Fe(111)W(111)
英文關鍵詞: DFT calculation, Acetylene hydrogenation, Selectivity, Fe(111), W(111)
論文種類: 學術論文
相關次數: 點閱:249下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇藉由密度泛函理論來研究乙炔分子在催化表面進行選擇性氫化反應,並且能夠順利使乙炔分子100%由氫化的方式轉換成乙烯。在我們的計算結果顯示出,利用Fe原子取代W(111)表面最上面兩層W原子形成的Fe(1,2)@W(111)表面有最好氫化選擇性效果。在乙炔氫化選擇性的反應中主要會有三種路徑發生:(1) 乙炔直接氫化至乙烯且可以順利於表面上脫附;(2) 乙炔過度氫化至乙烷;(3) 乙炔氫化至乙烯後進行C-C斷鍵形成兩個CH¬2吸附在表面。我們也針對其他雙金屬催化表面進行相同的反應(Fe(111)、W(111)以及利用不同層數所組合而成的Fe-W(111)雙金屬(在W(111)上以一層Fe原子取代形成Fe(1)@W(111);在Fe(111)上以一層W原子取代形成W(1)@Fe(111)以及在Fe(111)上以兩層W原子取代形成W(1,2)@Fe(111))。在Fe(1,2)@W(111)表面上形成乙烯所需誇越的活化能只要0.84eV;而C¬2H4進行氫化形成C2H5所需經過的能障為2.43eV,若進行乙烯的C-C斷鍵反應則需要跨越2.27eV的活化能。以上兩種反應途徑皆較形成乙烯後直接於表面脫附(0.42eV)的能量來得高。因此在Fe(12)@W(111)表面能夠有效提升C2H2氫化的反應活性以及達到將乙烯脫附的的效果。

    The selectivity of ethylene formation from the hydrogenation of acetylene could be tuned to 100% in our catalytic surface design, Fe(1,2)@W(111), in which the first two layers of W(111) surface is replaced by the Fe atoms. There are three possible reaction pathways in the hydrogenation of acetylene carried out on the catalytic metal surfaces: (1) solely formation of ethylene then desorbed from the surface; (2) complete hydrogenation to ethyl radical then ethane; (3) decompose to two methylene fragments. We introduced several monometallic and bimetallic surfaces (W(111), Fe(1,2)@W(111), Fe(111), W(1,2)@Fe(111), Fe(1)@W(111), and W(1)@Fe(111); where Fe(1)@W(111) represents the top layer of tungsten (111) surface replaced by the iron atoms, while W(1)@Fe(111) denotes the tungsten atoms replacing the first layer iron (111) surface ) to systematically tune the selectivity of ethylene formation via acetylene hydrogenation by employing DFT (density functional theory) calculations. On Fe(1,2)@W(111) surface, the barrier of ethylene formation is only 0.84 eV, the smallest among those bimetallic surfaces, and the barrier of further hydrogenation to C2H5 is 2.43 eV, while the alternative pathway of C-C bond scission is 2.27eV; these two latter barriers are much higher than C2H4 desorption energy (0.42eV). Therefore, the ethylene molecule could be the sole and final product to be desorbed from the catalytic tuned Fe(1,2)@W(111) surface.

    總目錄 i 中文摘要 iii 英文摘要 iv 第一章 緒論 1 第二章 理論與計算方法 3 §2-1 固態材料的電子結構理論 3 §2-1-1 密度泛函理論 3 § 2-1-3 廣義梯度近似法 (Generalized Gradient Approximation, GGA) 7 § 2-1-4空間週期性 (periodic boundary condition) 8 § 2-1-5布洛赫定理(Bloch Theorem) 9 § 2-1-6虛位勢 (pseudopotential) 11 § 2-1-7 VASP計算軟體 14 §2-3 態密度(Density of state, DOS) 17 第三章 C2H2在Fe(111)、W(111)和Fe-W(111) 雙金屬系統表面氫化選擇性反應研究 19 §3-1 前言 19 §3-2 計算方法與模型建立 22 §3-3 結果與討論 27 §3-3-1.1 Fe(111)、W(111)和Fe-W(111)雙金屬系統表面的ELF之探討 27 §3-3-1.2 C2H2和C2H4在Fe(111)、W(111)和Fe-W(111)雙金屬系統的吸附 29 結構及吸附能研究 29 §3-3-2.1 C2H2在Fe(111)表面進行斷鍵與氫化反應 48 §3-3-2.2 C2H4在Fe(111)表面進行斷鍵、脫氫、脫附與氫化反應 50 §3-3-3.1 C2H2在W(111)表面進行斷鍵與氫化反應 53 §3-3-3.2 C2H4在W(111)表面進行斷鍵、脫氫、脫附與氫化反應 55 §3-3-4.1 C2H2在Fe(1)@W(111)表面進行斷鍵與氫化反應 58 §3-3-4.2 C2H4在Fe(1)@W(111)表面進行斷鍵、脫氫、脫附與氫化 60 反應 60 §3-3-5.1 C2H2在Fe(1,2)@W(111)表面進行斷鍵與氫化反應 63 §3-3-5.2 C2H4在Fe(1,2)@W(111)表面進行斷鍵、脫氫、脫附與氫 65 化反應 65 §3-3-6.1 C2H2在W(1)@Fe(111)表面進行斷鍵與氫化反應 68 §3-3-6.2 C2H4在W(1)@Fe(111)表面進行斷鍵、脫氫、脫附與氫化 70 反應 70 §3-3-7.1 C2H2在W(1,2)@Fe(111)表面進行斷鍵與氫化反應 73 §3-3-7.2 C2H4在W(1,2)@Fe(111)表面進行斷鍵、脫氫、脫附與 75 氫化反應 75 §3-3-9 C2H2在Fe(1,2)@W(111)表面的氫化選擇性反應 80 第四章 總結 82 參考文獻 85

    (1) Zhang, Q.; Li, J.; Liu, X.; Zhu, Q. Appl. Catal. A: General 2000,
    197, 221.
    (2) Coq, B.; Figueras, F. J. Mol. Catal. A: Chemical 2001, 173, 117.
    (3) Canh, N. T.; Blaise, D.; Patrick, S.; Charles, C. Selective Hydrogenation Catalyst and a Process using that Catalyst. In U.S. Patent & Trademark Office; Institut Francais du Petrole: France, 2000.
    (4) Silvi, B.; Savin, A. Nature 1994, 371, 683.
    (5) Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. Angew. Chem. Int. Ed. Engl. 1991, 30, 409.
    (6) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
    (7) Sachtler, W. H. M. Faraday Discuss. Chem. Soc. 1981, 72, 7.
    (8) Rordiguez, J. A. Surf. Sci. Rep. 1996, 24, 223.
    (9) Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201.
    (10) Lam, Y. L.; Criado, J.; Boudart, M. Nouv. J. Chim. 1997, 1, 461.
    (11) Schneider, U.; Busse, H.; Link, R.; Castro, G. R.; Wandelt, K. J. Vac. Sci. Technol. A, 1994, 12, 2069.
    (12) Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.
    (13) González, S.; Sousa, C.; Illas F. J. Catal. 2006, 239, 431.
    (14) Choi, Y. M.; Compson, C.; Lin, M. C.; Liu, M. J. Alloys Compd. 2007, 427, 25.
    (15) Inderwildi, O. R.; Jenkins, S. J.; King, D. A. Sur. Sci. 2007, 601, L103.
    (16) González, S.; Loffreda, D.; Sautet, P.; Illas F. J. Phys. Chem. C 2007, 111, 11376.
    (17) Gladys, M. J.; Inderwildi, O. R.; Karakatsani, S.; Fiorin, V.; Held, G. J. Phys. Chem. C 2008, 112, 6422.
    (18) Fouda-Onana, F.; Savadogo, O. Electrochim. Acta 2009, 54, 1769.
    (19) Ham, H. C.; Hwang, G. S.; Han, J.S.; Nam, W.; Lim, T. H. J. Phys. Chem. C 2009, 113, 12943.
    (20) Zhang, J.; Jin, H.; Sullivan, M. B.; Lim, F. C. H.; Wu, P. Phys. Chem. Chem. Phys. 2009, 11, 1441.
    (21) Gan, L. Y.; Zhang, Y. X.; Zhao, Y. J. J. Phys. Chem. C 2010, 114, 996.
    (22) Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2008, 112, 19501.
    (23) Li, J.;Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2011, 115, 7392.
    (24) Gasteiger, H. A.; Marković, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1994, 98, 617.
    (25) Baschuk, J. J.; Li, X. Int. J. Energy Res. 2001, 25, 695.
    (26) Shimodaira, Y.;Tanaka, T.;Miura, T.;Kudo, A;Kobayashi, H. J. Phys. Chem. C 2007, 111, 272
    (27) Zhang, C. J.;Baxter, R. J.;Hu, P. J. Chem. Phys. 2001, 115, 5272.
    (28) Wang, G. C.;Jiao, J.;Bu, X. H. J. Phys. Chem. C 2007, 111, 12335.
    (29) Fouda-Onana, F.;Savadogo, O. J. Electacta. 2009, 54, 1769
    (30) Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science 2008, 320, 1320
    (31) Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science, 2008, 320, 1320.
    (32) Vincent, M. J.; Gonzales, R. D. AIChE, J., 2002, 48, 1257.
    (33) Abdelrehim, I. M.; Pelhos, K.; Madey, T. E.; Eng, J., Jr.; Chen, J. G. J. Phys. Chem. B 1998, 102, 9697.
    (34) Nitta, Y.; Hiramatsu, Y.; Okamoto, Y.; Imanaka, T. Stud. Surf. Sci. Catal 1991, 63, 103
    (35) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (36) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (37) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (38) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
    (39) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (40) Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890.
    (41) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (42) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (43) Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley & Sons: Now York, 1996.
    (44) Villars, P.; Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, 2nd ed.; ASM International: Materials Park, Ohio 1991.
    (45) Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. J. Phys. Chem. B 2005, 109, 14160.
    (46) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (47) Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
    (48) Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
    (49) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000,
    113, 9901.
    (50) Delbecq, F.; Zaera, F. J. Am. Chem. Soc. 2008, 130, 14924.
    (51) Tiruppathi, P.; Low, J. J.; Chan, A. S. Y.; Bare, S. B.; Meyer, R. J. Catal. Today 2011, 165, 106.

    下載圖示
    QR CODE