Basic Search / Detailed Display

Author: 許謹安
Hsu, Chin-An
Thesis Title: 準二維與自旋選擇性鈣鈦礦之材料與元件特性研究
The Properties of Quasi-2D and Spin Selectivity Perovskite Material and the Devices
Advisor: 趙宇強
Chao, Yu-Chiang
Committee: 陳奕君
Cheng, I-Chun
駱芳鈺
Lo, Fang-Yuh
趙宇強
Chao, Yu-Chiang
Approval Date: 2022/06/15
Degree: 碩士
Master
Department: 物理學系
Department of Physics
Thesis Publication Year: 2022
Academic Year: 110
Language: 中文
Number of pages: 101
Keywords (in Chinese): 準二維鈣鈦礦RPPDJPTADF掌性自旋電子學
Keywords (in English): Quasi-2d Perovskite, RPP, DJP, TADF, Chirality, Spintronics
Research Methods: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200744
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 108Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本篇文章是以準二維(Quasi-2D)鈣鈦礦為目標的研究,涵蓋範圍包括有機–無機鈣鈦礦之特性與電子自旋選擇之旋光鈣鈦礦為主,其中也包括R-P相(Ruddlesden-Popper Phase)與D-J相(Dion-Jacobson Phase)鈣鈦礦的特性探討。
    在有機–無機鈣鈦礦的部分,本文選擇CsPbBr_xCl_(3-x)作為鈣鈦礦單位晶格的材料,並選擇有機長鏈4-F-PMABr(4-Fluoro-benzylammonium bromide)作為層狀結構間的連結,旨在利用鹵素的比例變換調變能隙與引入適當長鏈材料後所引發的量子侷限效應(Quantum Confinement Effect)而達成調配適當藍光的結果。在調配光色步驟完成後,透過引入「電洞傳輸層TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)])」、「電子阻擋層PVK(Poly(9-vinylcarbazole))」以及「電子傳輸層TPBi(2,2′,2-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))」以上幾種方式提升元件之量子效率,並以其他穩態性質的量測來分析材料之特性。而我們在這項研究中,成功的將外部量子效率(External Quantum Efficiency, EQE)提升到了4.208%。元件效率最佳化後,本文將熱活化延遲螢光發光材料(Thermally Activated Delayed Fluorescent,TADF)依照比例參入鈣鈦礦前驅液當中,並成功達成了單層混合光色的發光元件。
    至於在自旋選擇之旋光鈣鈦礦中,本文透過D-J相鈣鈦礦的特性並引入具有雙胺(diamine)之長鏈分子作為層狀結構間的連結。在本研究中,本文不同於以往選擇了具有不對稱性的雙胺基長鏈4-AMPBr_2(4-(Aminomethyl)piperidine bromide)以取代以往多具有對稱性的雙胺基長鏈,達成由結構不對稱所引發的自旋選擇與旋光特性,並藉由圓二色性光譜儀(Circular Dichroism Spectrophotometer , CD)與圓偏振螢光光譜儀(Circularly Polarized Luminescence Spectrophotometer , CPL)的量測探討其對於圓偏振光的吸收以及激發圓偏振之螢光分析。

    This thesis is based on research of Quasi-2D Hybrid Organic-Inorganic Perovskites (HOIPs) and Chirality Induced spin selectivity (CISS) Perovskites, also including the principle of Ruddlesden-Popper Phase Perovskite (RPP) and Dion-Jacobson Phase Perovskite (DJP).
    The first part is about the optical properties and electrical characteristic of HOIPs devices. We synthesized the Quasi-2D Perovskite by using CsPbB"r" _"x" C"l" _"3-x" and organic long chain molecule 4-F-PMABr. Our research reach the target by tuning the proportion of halogen, adding organic long chain molecule 4-F-PMABr into perovskite layer, and motivating the Quantum Confinement Effect to realize the blue emission. We introduced the Hole Transport Layer : “TFB (Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(4-sec-butylphenyl)diphenylamine)])” , Electron Blocking Layer: “PVK (Poly(9-vinylcarbazole))” , Electron Transport Layer: “TPBi (2,2’,2-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))”. The efficiency of perovskite light emitting diodes was up to the high performance (External Quantum Efficiency = 4.208%). After that, The Thermally Activated Delayed Fluorescent (TADF) was add into the perovskite precursor solution, and achieved a single emissive layer to form the light emitting diode successfully.
    The second part is the chiral-optical property and devices of Chiral perovskite. We synthesized the Chiral Perovskite by MAPbB"r" _"3" and 4-AMPB"r" _"2" (4-(Aminomethyl)piperidine bromide). 4-AMPB"r" _"2" has the characteristic of diamine rather than single amine that it has the potential to form DJP, also it has the property of structure asymmetry, which means 4-AMPB"r" _"2" -based perovskite will be observed the chirality by Circular Dichroism Spectrophotometer (CD) and Circularly Polarized Luminescence Spectrophotometer (CPL).

    誌謝 i 摘要 ii Abstract iv 目錄 vi 表次 ix 圖次 x 一、緒論 1 1.1前言 1 1.2鈣鈦礦發展與歷史 1 1.3研究動機 1 二、材料特性及原理 3 2.1鈣鈦礦介紹 3 2.1.1鈣鈦礦簡介 3 2.1.2 Ruddlesden-Popper相鈣鈦礦 5 2.1.3 Dion-Jacobson相鈣鈦礦 7 2.1.4二維鈣鈦礦層數與形成能 9 2.2光致發光與能階 11 2.2.1光致發光 11 2.2.2螢光、磷光與電子自旋 11 2.2.3直接能隙、間接能隙與能帶理論 14 2.2.4 HOMO/LUMO 19 2.2.5激子 20 2.2.6光致發光量子產率 21 2.3圓偏振特性與科頓效應 23 2.4能階分裂引發的圓偏振現象 25 2.5熱活化延遲螢光發光材料介紹 30 2.6電致發光與量子效率 31 2.7量子侷限效應 32 2.8鈣鈦礦發光二極體之結構 33 三、實驗儀器及原理 35 3.1量測設備 35 3.1.1圓二色性光譜儀 35 3.1.2圓偏振螢光光譜儀 35 3.1.3光致發光光譜儀 35 3.1.4電致發光光譜儀 35 3.1.5 X光繞射儀 35 3.2製程設備 36 3.2.1紫外光臭氧蝕刻與清洗機 36 3.2.2手套箱 36 3.2.3旋轉塗佈機 36 3.2.4加熱板 36 3.2.5熱電阻式蒸鍍機 36 四、實驗流程與架構 38 4.1有機-無機鈣鈦礦穩態性質測量 38 4.1.1鈣鈦礦樣品配置 38 4.1.2鈣鈦礦與TADF樣品配置 40 4.1.3改變長鏈之PL量測 41 4.1.4改變鹵素比例之PL量測 41 4.2旋光鈣鈦礦穩態性質測量 42 4.2.1旋光鈣鈦礦樣品配置 42 4.2.2圓二色性光譜儀(CD)量測 43 4.2.3圓偏振螢光光譜儀(CPL)量測 43 4.2.4 XRD量測 44 4.2.5 PL量測 44 4.3元件前置作業 45 4.3.1蝕刻流程 45 4.3.2基板清洗 45 4.4有機-無機鈣鈦礦元件結構 46 4.4.1電洞注入層 46 4.4.2電洞傳輸層 46 4.4.3電子阻擋層 47 4.4.4有機-無機鈣鈦礦發光層 48 4.4.5電子傳輸層 48 4.4.6蒸鍍電極 49 4.5旋光鈣鈦礦元件結構 50 4.5.1電洞注入層 50 4.5.2旋光鈣鈦礦發光層 50 4.5.3電子傳輸層 50 4.5.4蒸鍍電極 50 4.6有機-無機鈣鈦礦元件製程條件 51 4.6.1 PEDOT:PSS 51 4.6.2 TFB 51 4.6.3 PVK 51 4.6.4有機–無機鈣鈦礦發光層 51 4.6.5 TPBi 52 4.6.6 LiF/Al 52 4.7旋光鈣鈦礦元件製程條件 53 4.7.1 PEDOT:PSS 53 4.7.2旋光鈣鈦礦發光層 53 4.7.3 TPBi 53 4.7.4 LiF/Al 53 五、實驗結果與討論 54 5.1有機-無機鈣鈦礦性質 54 5.1.1改變長鏈之光譜 54 5.1.2改變鹵素比例之光致發光光譜 55 5.2有機-無機鈣鈦礦元件 56 5.2.1不同有機長鏈之比較 56 5.2.2鹵素比例之影響 58 5.2.3引入電洞傳輸層之比較 61 5.2.4電子阻擋層使用熱風槍之影響 64 5.2.5鈣鈦礦加入TADF材料之影響 67 5.2.6 TADF–鈣鈦礦加入CBP與SimCP2等主體材料 71 5.3旋光鈣鈦礦性質 77 5.3.1圓二色性光譜量測 77 5.3.2圓偏振螢光光譜量測 86 5.3.3 XRD量測 92 5.3.4 PL量測 94 5.4旋光鈣鈦礦元件 95 5.4.1引入電子阻擋層與電子傳輸層之影響 95 六、結論 98 6.1有機-無機鈣鈦礦 98 6.2旋光鈣鈦礦 99 參考文獻 100

    1 Jiaqi Ma, et al., “Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties” Adv. Mater., 008785, 2021.
    2 Zhi-Kuang Tan, et al., “Bright light-emitting diodes based on organometal halide perovskite” Nat. Nanotechnol., 687–692, 2014.
    3 Matas Guzauskas, et al., “Polymorph acceptor-based triads with photoinduced TADF for UV sensing” Chem. Eng. J., 131549, 2021.
    4 David Giovanni, “Optical‑spin dynamics in organic‑inorganic hybrid lead halide perovskites” Doctoral thesis, Nanyang Technological University, Singapore, 2017.
    5 Zhen Li, et al., “Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys” Chem. Mater., 284–292, 2016.
    6 Haoran Lin, et al., “Low-Dimensional Organometal Halide Perovskites” ACS Energy Lett., 54–62, 2018.
    7 Zhuofei He, et al., “High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites” ACS Photonics, 587–594, 2019.
    8 Sajjad Ahmad, et al., “Dion-Jacobson Phase 2D Layered Perovskites for Solar Cells with Ultrahigh Stability” Joule, 794–806, 2018.
    9 Yang Li, et al., “Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion−Jacobson Two-Dimensional Perovskite Solar Cells” Nano Lett., 150–157, 2019.
    10 In-Hyeok Park, et al., “Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic−Inorganic Perovskite” J. Am. Chem. Soc., 15972–15976, 2019.
    11 Yuqiang Liu, et al., “Two-Dimensional Dion−Jacobson Structure Perovskites for Efficient Sky-Blue Light-Emitting Diodes” ACS Energy Lett., 908–914, 2021.
    12 Yuequn Shang, et al., “Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure” Sci. Adv., 8072, 2019.
    13 Jun Xing, et al., “Color-stable highly luminescent sky-blue perovskite light-emitting diodes” Nat. Commun., 3541, 2018.
    14 Ashcroft, Mermin, “solid state physics” Saunders, 1976.
    15 Charles Kittel, “Introduction to Solid State Physics” Wiley, 1953.
    16 Pradip Basnet, “Metal oxide photocatalytic nanostructures fabricated by dynamic shadowing growth” Doctoral thesis, University of Georgia, U.S.A., 2015.
    17 Luminescence online, https://ned.ipac.caltech.edu/level5/Sept03/Li/Li4.html. 2017.
    18 Guolin Cai, et al., “Circular dichroism exciton chirality method. New red-shifted chromophores for hydroxyl groups” J. Am. Chem. Soc., 7192–7198, 1993.
    19 Mei Fang, et al., “Recent advances in tunable spin–orbit coupling using ferroelectricity” APL Mater., 060704, 2021.
    20 A. Manchon, et al., “New perspectives for Rashba spin–orbit coupling” Nat. Mater., 871–882, 2015.
    21 G Bihlmayer, et al., “Focus on the Rashba effect” New J. Phys., 050202, 2015.
    22 Maya Isarov, et al., “Rashba Effect in a Single Colloidal CsPbBr3 Perovskite Nanocrystal Detected by Magneto-Optical Measurements” Nano Lett., 5020–5026, 2017.
    23 Jingying Wang, et al., “Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites” Nat. Commun., 129, 2019.
    24 Carlos Mera Acosta, et al., “Zeeman-type spin splitting in nonmagnetic three-dimensional compounds” Npj Quantum Mater., 41, 2019.
    25 Lingling Tao, et al., “Insulator-to-conductor transition driven by the Rashba–Zeeman effect” Npj Comput. Mater., 172, 2020.
    26 Circular Dichroism, https://jascoinc.com/products/spectroscopy/circular-dichroism/, JASCO.
    27 Circularly Polarized Luminescence, https://jascoinc.com/products/spectroscopy/circularly-polarized-luminescence-cpl-300/, JASCO.
    28 Lingling Mao, et al., “Hybrid Dion–Jacobson 2D Lead Iodide Perovskites” J. Am. Chem. Soc., 3775–3783, 2018.
    29 Eugenia S. Vasileiadou, et al., “Insight on the Stability of Thick Layers in 2D Ruddlesden−Popper and Dion−Jacobson Lead Iodide Perovskites” J. Am. Chem. Soc., 2523−2536, 2021.
    30 Vaibhav V. Nawale, et al., “Dual Excitonic Emission in Hybrid 2D Layered Tin Iodide Perovskites” J. Phys. Chem. C., 21129−21136, 2020.

    無法下載圖示 Public on Internet date:
    2027/07/05
    QR CODE