簡易檢索 / 詳目顯示

研究生: 徐珮瑜
Hsu, Pei Yu
論文名稱: 急動度觀測器之設計及其於運動控制系統之應用
Design of a Jerk Observer and Its Application to Motion Control Systems
指導教授: 呂有勝
Lu, Yu-Sheng
口試委員: 呂有勝
Lu, Yu-Sheng
林明璋
Lin, Ming-Chang
吳尚德
Wu, Shang-Teh
蘇科翰
Su, Ke-Han
口試日期: 2021/10/20
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 觀測器急動度加速規運動控制
英文關鍵詞: observer, jerk, accelerometer, motion control
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202101804
論文種類: 學術論文
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為獲得急動度訊號,並應用於運動控制平台,以達到更良好的控制性能。本研究實驗所使用之加速規包括電容式和電荷式加速規,使用其量測加速度,再透過設計的觀測器,觀測得到急動度訊號,以提升運動控制系統的性能。
    本研究考慮的系統在運動時容易產生振動,其限制了控制目標的動態性能,本論文提出一結合加速度與位置之急動度觀測器,其中加速度訊號由電荷式與電容式加速規獲得,位置由光學尺感測。該觀測器藉由加速度及位置訊號獲得急動度訊號,並將其回授至控制系統,以降低系統的振動問題。本研究使用兩種不同的急動度觀測器進行比較研究,並改善系統之振動情形。
    本研究實驗平台為伺服馬達結合滾珠螺桿組成之線性平台,進行直線運動位置追蹤控制。採用 TI TMS320C6713 DSP 與 Xilinx 可程式閘陣列(FPGA)結合而成之控制器硬體核心,並以 C 語言與硬體描述語言(VHDL)作為控制器設計之發展工具。本研究使用電荷式及電容式加速規,以得到不同的加速度訊號,並且使用於急動度觀測器於平台,以比較不同加速度訊號與觀測器架構對控制性能的影響。由實驗結果可知,本研究提出的方法能提供較好的控制性能。

    The purpose of this research is to obtain a jerk signal for motion control systems to improve control performance. The motion system considered in this research is prone to vibrating during movement, which limits its dynamic performance. This study proposes a jerk observer, which combines acceleration sensing with a position signal provided by an optical ruler. The acceleration sensing is achieved by a capacitive or a charge accelerometer. The jerk observer fuses the acceleration and the position signals to obtain a jerk estimate that is fed back to reduce output vibration. A comparative study is also conducted to demonstrate salient features of the proposed observer.
    The experimental platform is a linear motion platform mainly composed of a servo motor and a ball screw. A TI TMS320C6713 DSP with a Xilinx field-programmable gate array (FPGA) forms the controller hardware’s core, and the C language and hardware description language (HDL) are used to develop the controller/observer system. In this study, two acceleration signals and two different jerk observers were combined and compared in terms of some popular performance indices. From experimental results, it can be seen that the methods proposed in this study can all produce better control performance.

    第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 論文架構 7 第二章 急動度觀測器設計 9 2.1 加速規介紹 9 2.1.1 IEPE 加速規 9 2.1.2 電荷式加速規 10 2.1.3 電容式加速規 12 2.2 實驗用加速規及其模型建立 13 2.2.1 IEPE 加速規 13 2.2.2 電荷式加速規 14 2.2.3 電容式加速規 14 2.3 急動度觀測器(Jerk Observer)設計 14 2.4 串聯式急動度觀測器(Jerk Observer in a cascade structure) 17 2.5 急動度觀測器模擬 20 2.5.1 觀測器模擬 20 2.5.2 量測雜訊的影響 22 第三章 系統描述 26 3.1 實體實驗平台硬體架構簡介 26 3.2 訊號處理架構 28 3.3 系統位置與速度回授 31 3.4 系統模型描述 33 3.4.1 狀態方程式推導 34 3.4.2 轉移函數推導 35 3.5 系統鑑別[9] 36 3.5.1 對加速度量測頻率響應求電荷式加速規之模型 37 3.5.2 對速度量測頻率響應以及與加速度降階做比對 41 3.5.3 急動度訊號對加速度訊號評估 43 3.6 系統參數最佳化 46 3.6.1 透過理論模型與鑑別結果求參數 46 3.6.2 透過實驗與量測驗證參數準確性 49 第四章 控制器設計與實驗命令 52 4.1 PD 控制器設計 52 4.2 文獻狀態觀測器[8] 57 4.3 控制律設計 61 4.4 軌跡命令 62 4.5 實驗命令與實驗數據分析使用之各種性能指標 63 第五章 急動度觀測器實驗與控制 65 5.1 使用路徑一之位置控制與觀測結果 66 5.2 使用路徑二之位置控制與觀測結果 76 5.3 使用路徑三之位置控制與觀測結果 80 5.4 實驗結果討論 85 第六章 串聯式觀測器實驗與控制 86 6.1 使用路徑一之位置控制與觀測結果 86 6.2 使用路徑二之位置控制與觀測結果 92 6.3 使用路徑三之位置控制與觀測結果 94 6.4 實驗結果討論 97 第七章 結論 99 參考文獻 100 附錄 A 102 A.1 將旋轉運動之慣性矩轉為直線運動之質量 102 A.2 機台其他部分量測 102 附錄 B 104

    [1] S. L. Chen, X. Li, C. S. Teo, and K. K. Tan, “Composite jerk feedforward and disturbance observer for robust tracking of flexible systems,” Automatica, vol. 80, pp. 253-260, 2017.
    [2] M. Boerlage, “MIMO jerk derivative feedforward for motion systems,” 2006 American Control Conference, pp.3892-3897.
    [3] J. H. Fang, F. Guo, Z. Chen, and J. H. Wei, “Improved sliding-mode control for servo-solenoid valve with novel switching surface under acceleration and jerk constraints,” Mechatronics, vol.43, pp.66-75, 2017.
    [4] T. Manabe and S. Wakui, “Production and Application of Horizontal Jerk Sensor,” in Proc. 2018 International Conference on Advanced Mechatronic Systems, Zhengzhou, 2018, pp. 298–303.
    [5] J.J. Rangel-Magdaleno, R.J. Romero-Troncoso, R.A. Osornio-Rios, and E. Cabal-Yepez, “Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensors in CNC applications,” Sensors, vol. 9, pp. 3767–3789, 2009.
    [6] T. Tsuchiya, M. Yamakado, M. Ishii, and M. Sugano, “Fundamental study on vibration control using the derivative of acceleration "Jerk" sensor,” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 41, no. 4, pp. 786–791, 1998.
    [7] N. Henmi, K. Yoshimura, M. Tanaka, and M. Yamak, “A piezoelectric jerk sensor – performance of prototype sensor –,” Trans. Japan Soc. Automotive Engineers, vol.41, pp. 425–430, Mar. 2010.
    [8] A. Dumanli and B. Sencer, “Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback,” Precision Eng., vol. 54, pp. 254–268, 2018.
    [9] 李柏辰,加速度觀測器於線性平台之追蹤控制應用,國立臺灣師範大學機電工程學系研究所,碩士論文,2013。
    [10] https://www.pcb.com/products?m=333b50
    [11] https://www.crlsensors.com/
    [12] https://www.analog.com/en/index.html
    [13] 何建龍、許怡儒(2002)。加速度微感測器,pp.2-4;pp.10-12。
    [14] https://www.imv.co.jp/e/products/vibrograph/pickup/e-comp/
    [15] https://www.electronicshub.org/arduino-rotary-encoder/
    [16] https://www.ewellix.com/en/global/products/linear-systems/linear-slides
    [17] D.J. Gordon and K. Erkorkmaz, “Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter,” Precision Eng., vol. 37, pp. 308–322, 2013.
    [18] A. Kamalzadeh1 and K. Erkorkmaz1, “Compensation of axial vibrations in ball screw drives,” CIRP Annals., vol.56, pp.373–378,2007.
    [19] http://tw.mitsubishielectric.com/fa/zh/product/products.aspx?i=153
    [20] https://mtiinstruments.com/products/non-contact-measurement/1d-laser/microtrak-4-laser-displacement-sensor/

    無法下載圖示 電子全文延後公開
    2026/10/27
    QR CODE