簡易檢索 / 詳目顯示

研究生: 陳怡君
Yi-Chun Chen
論文名稱: 運用線上測驗評估電腦輔助教學成效
指導教授: 張俊彥
Chang, Chun-Yen
楊芳瑩
Yang, Fang-Ying
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 133
中文關鍵詞: 電腦輔助教學問題解決線上測驗領域特定知識推理能力態度後設認知
論文種類: 學術論文
相關次數: 點閱:261下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在編製以土石流為主題的線上「領域特定知識測驗」(Domain-Specific Knowledge Test, DSKT)、「推理能力測驗」(Reasoning Skills Test, RST)及「態度測驗」(Attitudes Test, AT),藉由此三項測驗及由半結構式晤談編碼轉換的後設認知量化資料和質性資料,探討學生在「以問題解決為基礎之土石流CAI電腦輔助教學軟體」(董家莒、張俊彥,1999)課程後之學習成效。
    研究設計採準實驗研究法,以彰化縣某國立高中一年級地球科學之學生為研究對象(n=36)。學生在接受「DSKT」、「RST」、「AT」線上測驗前測後,研究者選取班上一半人數(n=20)且男女各半進行前晤談,之後才進行「以問題解決為基礎之土石流CAI電腦輔助教學軟體」課程,課程結束後隔週再次進行「DSKT」、「RST」、「AT」線上測驗後測,在後測後同樣選取之前晤談的學生進行課程後晤談。在蒐集研究資料後,以敘述性統計(descriptive statistics)、皮爾遜積差相關(Pearson product-moment correlation)、相依樣本t考驗(paired samples t-test)、單因子變異數分析(one-way analysis of variance, ANOVA)等統計方法,描述「量」方面的研究結果,並輔以「質」的資料,作出適切的討論。研究結果顯示:
    1.DSKT、RST、AT前測皆與總分成中至高度顯著相關,但彼此之間相關性為低度且未達顯著。意謂DSK、RS、AT可能分別代表問題解決不同的三個分量,且與先前的研究符合,因此未來在地球科學上的問題解決能力,應該可以藉由學生在DSK、RS、AT的線上測驗表現來代表。
    2.經歷過CAI土石流電腦輔助課程的全部學生,在領域特定知識有顯著的提升,且達到大的效果量,而全體學生的推理能力與態度沒有達到統計上的顯著進步或退步。女生比男生容易藉由此課程及該授課方式提升推理能力,並達到中至大的實際顯著程度。但無論在DSKT、RST、AT線上測驗的前測、後測及後設認知或第一次段考成績上,沒有存在顯著的男女間差異。
    3.前測中,DSKT與RST相關性很小且未達到顯著,但在後測表現上達顯著的中至高度正相關,代表在課程後在領域特定知識上表現較好的學生,在推理能力的問題上也能獲得較好的表現,意即提升領域特定知識的同時,推理能力後測的表現亦同時提升。
    4.RST成效(後測與前測差值)與後測之DSKT、RST、AT三分項測驗皆呈中至高度的顯著相關,代表在DSK、RS、AT後測表現較好的學生在推理能力上也有較好的學習成效。
    5.本研究使用晤談法,以學生對整個學習過程(包含前後測及課程)之反思作為分析後設認知表現的依據,分析晤談內容後發現,「指標N1正向且具體回饋的次數」越多,則在「指標N2 無概念或態度取向的非具體回答回饋次數」及「指標N2 無法說明或負面回饋次數」越少,此結果代表高後設認知能力者,較不會回答負面或無概念及態度取向的回答,而後設認知表現較差者(即無法說明或負面回饋次數多),在無概念及態度取向回答的次數也較多,其間有顯著正相關的關係存在。
    6.後設認知指標表現愈佳的學生在RST無論是前測或後測愈能有好的表現,其間相關達顯著高度正相關,相對的,後設認知指標表現愈差者在RST前測、後測表現上也表現愈差,且RST成效(後測與前測差值)也愈低,達中至高度的顯著相關。除了在後設認知指標表現差者的DSKT後測也較差外,後設認知與DSKT前測、AT前後測、第一次段考成績則皆無達到統計上的顯著相關,因此發現「後設認知」與問題解決能力三項度中的「推理能力」較為相關。
    7.本研究尚藉由晤談所得之質性資料對線上測驗給予設計的建議,及整理出學生在土石流課程後仍易混淆的概念供教師參考。

    第一章 緒論 ………………………………………………………………… 1 第一節 研究背景與動機 …………………………………………………… 1 第二節 研究目的與待答問題 ……………………………………………… 3 第三節 研究範圍及限制 …………………………………………………… 4 第四節 研究的重要性 ……………………………………………………… 5 第五節 名詞釋義 …………………………………………………………… 6 第二章 文獻探討 …………………………………………………………… 9 第一節 電腦輔助教學的定義及特質 ……………………………………… 9 第二節 問題解決在電腦輔助教學上的應用 ………………………………15 第三節 問題解決相關變項研究 ……………………………………………19 第三章 研究方法 ……………………………………………………………33 第一節 研究對象 ……………………………………………………………33 第二節 研究設計 ……………………………………………………………35 第三節 研究流程 ……………………………………………………………35 第四節 研究工具 ……………………………………………………………42 第五節 資料分析 ……………………………………………………………49 第四章 研究結果與討論 ……………………………………………………55 第一節 「領域特定知識測驗(DSKT)」、「推理能力測驗(RST)」、「態度測驗(AT)」分析結果 ………………………………………………56 第二節 「領域特定知識測驗(DSKT)」、「推理能力測驗(RST)」、「態度測驗(AT)」前測及後測得分分析結果 ……………………………59 第三節 各項度間之相關性綜合分析 ………………………………………62 第四節 不同性別的學生在各項度表現上的差異 …………………………71 第五節 質性資料分析結果 …………………………………………………73 第五章 綜合討論與建議 ……………………………………………………83 第一節 結論與討論 …………………………………………………………83 第二節 研究限制 ……………………………………………………………91 第三節 建議與展望 …………………………………………………………92 參考文獻 ………………………………………………………………………96 附錄目次 附錄一 領域特定知識測驗(DSKT)、推理能力測驗(RST)、 態度測驗(AT)紙本版 ……………………………………………106 附錄二 開放式問題解決能力測驗 …………………………………………115 附錄三 開放式問題解決能力測驗學生作答類型整理 ……………………119 附錄四 半結構式晤談問題 …………………………………………………128 附錄五 後設認知指標次數頻率統計 ………………………………………130

    王春展(1997):專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。
    朱延平(1999):多媒體在教育上的應用。資訊與教育,72,15-25。
    李蓉欣(2004):中學地球科學教師教學後設認知能力與個人知識認識信念之相關研究。未出版碩士論文,國立台灣師範大學地球科學研究所,台北市。
    邱美虹,陳英嫻(1995)。月相盈虧之概念改變。師大學報,40,509。
    林清山(1995):心理與教育統計學。台北市:東華書局。
    吳心楷(1997):科學學習相關的認知能力與認知風格之性別差異探討。科學教育月刊,204,16-23。
    吳佳玲(2001):影響高一學生地球科學問題解決能力之相關變項探討。未出版碩士論文,國立台灣師範大學地球科學研究所,台北市。
    吳佳玲和張俊彥(2001):學生問題解決思考能力與其個人背景相關變項之探究。科學教育月刊,245,2-10。
    吳佳玲和張俊彥(2002):高一學生地球科學問題解決能力與其先備知識及推理能力關係的初探研究。科學教育學刊,10(2),135-156。
    邱上真(1989):後設認知研究在輕度障礙者教學上的應用。特殊教育季刊,30,12-16,47。
    邱貴發(1990):電腦整合教學的概念與方法。台灣教育月刊,479,1-8。
    邱貴發(1994):電腦輔助學習的理念與發展方向。教學科技與媒體,13,15-22。
    周佩琪(2001):地球科學問題解決能力之相關因素分析。未出版國科會大專生計畫,台北市。(NSC 90-2815-C-003-043-S)
    洪榮昭(1992):電腦輔助教學之設計原理與應用。台北市:師大書苑。
    翁玉華(1998):問題解決能力與科學過程技能之相關探討。未出版碩士論文,國立台灣師範大學地球科學研究所,台北市。
    國立編譯館主編(2000)。教育大辭書(五)。台北市:文景書局。
    教育部(1995):高級中學基礎地球科學課程標準。台北市:教育部。
    教育部(1997):資訊教育基礎建設。台北市:教育部。
    教育部(1999):九年一貫課程「自然與科技」綱要。台北市:教育部。
    教育部(2004):高中課程暫行綱要。台北市:教育部。
    國立編譯館主編(2000):教育大辭書(五)。台北市:文景書局。
    張昇鵬(2003):資賦優異學生與普通學生後設認知與創造思考能力之比較研究。特殊教育學報,7,95-120。
    張俊彥和翁玉華(2000):我國高一學生的問題解決能力與其科學過程技能之相關性
    研究。科學教育學刊,8,35-56。
    張春興(1996):教育心理學(修訂版)。台北市:東華書局。
    陳昭雄(1988):電腦輔助教學概論。台北市:松岡電腦圖書資料有限公司。
    溫嘉榮和邱乾輝(1990):電腦輔助教學理論與程式設計實務。台北市:松岡電腦圖書資料有限公司。
    湯偉君(1999):創造性問題解決(CPS)模式的沿革與應用。科學教育月刊,223,2-20。
    游寶達(2001):序文-多媒體在網路教學上的應用。資訊與教育雜誌,82,1。
    楊宗仁(1991):後設認知的源起及其理論。資優教育季刊,38,p16-25
    楊明家(1997)。國小六年級不同解題能力學生在數學解題歷程後設認知行為之比較研究。未出版碩士論文,屏東師範學院國民教育研究所。
    楊坤源(1999):問題解決在科學學習成就評量上的應用。科學教育月刊,216,3-16
    董家莒(2000):「問題解決」為基礎之電腦輔助教學成效。未出版碩士論文,國立台灣師範大學地球科學研究所,台北市。
    董家莒和張俊彥(1999):以「問題解決」為策略之電腦輔助教學成效:以土石流單元為例。中華民國第十五屆科學教育學術研討會手冊(頁133)。
    趙志揚(1989):電腦輔助訓練的學習心理基礎與教學軟體的編製原則。就業與訓練,7(8),80-84
    潘宏明(1995):原住民國小學童數學解題後設認知行為之研究。國科會專題研究計畫成果報告。NSC 84-2511-S-026-006
    劉誌文(1995):國民小學自然科創造性問題解決教學效果之研究。國民教育研究集刊,1,385-402。
    劉德慶主編(2006):高中基礎地球科學。台北縣:泰宇出版社。
    簡惠燕(2000):國小學童在科學問題解決過程中創造力與後設認知之相關研究。未出版碩士論文,屏東師範學院國民教育研究所,屏東市。
    Alexander, P. A., & Judy, J. E. (1998). The interaction of domain-specific and
    strategic knowledge in academic performance. Review of Educational Research, 58, 375-404.
    American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
    Ayer, S. J. (1989). Creative problem solving in the classroom. (ERIC Document Reproduction Service No. ED 317 446)
    Barba, R. H. (1990). A comparison of expert and novice earth and space science teachers’ problem solving abilities. Dissertation: The Pennsylvania State University.
    Basaga, H., Geban, O., & Tekkaya, C. (1994). The effect of the inquiry teaching method on biochemistry and science process skills achievements. Biochemical Education, 22, 29-32.
    Benbow C., & Stanley J. (1982). Consequences in High School and College of Sex Differences in Mathematical Reasoning Ability A longitudinal Perspective. American Educational Research Jounal, 19(4), 598.
    Buerk, D. (1985). The Voices of Women Making Meaning in Mathematics. Journal of Education, 167(3), 59-70.
    Campbell, D., & Stanley, J. (1966). Experimental and quasi-experimental designs for research. Chicago, IL: Rand Mcnally.
    Casakin, H. P., & Goldschmidt, G. (2000). Reasoning by visual analogy in design problem-solving: The role of guidance. Environment & Planning B: Planning & Design, 27(1), 105-119.
    Champagne, A. B. (1988). Definition and assessment of the higher-order cognitive skills. Nat. Assoc. for Res. In Sci. Teaching, Research Matter… To the Science teacher.
    Champagne, A. B., & Klopfer, L. E. (1977). A sixty-year perspective on three issues in science education: I whose ideas are dominant? II. representation of women. III. reflective thinking and problem solving. Science Education, 61, 431-452.
    Champagne, A. B., & Klopfer, L. E. (1981). Problem solving as outcome and method in science teaching: Insights from 60 years of experience. School Science and Mathematics, 81, 3-8。
    Chang, C.Y. (1996). The effect of a problem-solving based instructional model on the achievement and alternative frameworks of nine grade earth science students in Taiwan. Unpublished doctoral dissertation: The University of Texas at Austin, Austin, Texas.
    Chang, C.Y. (2000). The development of a problem-solving-based computer-assisted instruction to improve earth science student’s achievement. Proceedings of The Third International Conference on Geoscience Education, 12-13. Sydney, Australia: Australian Geological Survey Organization, ISSN:1039 0073. (NSC 87-2511-S-003-048)
    Chang, C.Y., Barufaldi, J.P., Lin, M.C., & Chen, Y.C. (in press). Assessing tenth-grade students’ problem solving ability online in the area of Earth sciences. Computers in Human Behavior
    Chang, C.Y., Barufaldi, J.P. (1999). The use of a problem-solving-based instructional model in iniating change in students’ achievement and alternative frameworks. International Journal of Science Education, 21(4), 373-388.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, New Jersey :Lawrence Erlbaum Associate, Inc.
    Cohen, J. (1994). The earth is round (p<.05). American Psychologist, 49(12), 997-1003.
    Dewey (1933). How we think. Boston: D. C. Heath.
    Fierros, E. G. (1999, April). Examining Gender Differences in Mathematics Achievement on the Third International Mathematics and Science Study (TIMSS). Paper presented at the Annual Meeting of the American Educational Research Association (Montreal, Quebec, Canada).
    Fennema, E. (1984). Girls, women and mathematics. In E. Fennema and M. J. Ayer (Eds.), Equity or equality. Berkeley, CA:McCuthcan.
    Fred Nolan (1984). CAI in Mathematical Problem Solving: Guidelines for Software Design and Purchase. Computers in the Schools, 1(2), 71-80.
    Gagne, R.M. (1985). The conditions of learning (4th ed.). New York: Holt, Rinehart and Winston.
    Gagne, R. M. (1970). The conditions of learning. London: Holt-Saunders.
    Gallagher, A. M. & De Lisi, R. (1994). Gender differences in scholastic aptitude test-mathematics problem solving among high-ability students. Journal of Education Psychology, 86(2), 204-211.
    Gallagher, A. M., De Lisi, R., Holst, P.C., McGillicuddy, De Lisi, A. V., Morely, M. & Cahalan, C. (2000). Gender differences in advenced mathematical problem solving. Journal of Experimental Child Psychology, 75(3), 165-190.
    Geban, O., Askar, P., & Ozkan, I. (1992). Effects of computer simulations and problem-solving approaches on high school stiudents. Journal of Educational Research, 86(1), 5-10.
    Gregory, J. R. & Stewart, M. F. (1997). Production of a mulitimedia CAL package in basic physics. Physics Education, 32(5), 332-339.
    Greenfield, L. B. (1987). Teaching thinking through problem solving. New Directions for Teaching and Learning, 30, 5-22.
    Hicks, B. & Hyde, D. (1973). Teaching about CAI. Journal of teacher education, summer, 24, p.120.
    Hacker, D. J., Dunlosky, J. & Graesser, A. C. (Eds.) (1998). Metacognition in Educational Theory and Practice. NJ: Lawrence Erlbaum Associates.
    Hare-Mustin, R. T. & Marecek, J. (1988). The meaning of difference: Gender theory, postmodernism, and psychology. American Psychologist, 43(6), 455-464.
    Haseltine, E. (2000). Presents two experiments to test gender differences in spatial and verbal problem-solving. Discover, 21, 104.
    Holyoak, K. J. (1990). Problem Solving. In D.N. Osherson, & E.E. Smith (Eds.), Thinking. Camgridge: The MIT Press.
    Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63-85.
    Kindfield, A.C.H. (1991). Understanding a basic biological process: Expert and novice modles of meiosis. Paper presented at the annual meeting of Nat. Amer. For Res. In Sci. Teach., Fontana, WI, April, 1991.
    Kluwe, R. H. (1990). Understanding and problem-solving. In. Schneider, & Weinert (Eds.), Interact. among. aptitudes, strategies, and knowledge in cogn. Perf. N. Y., Springer-Verlag.
    Linn, M. C. & Pulos, S. (1983). Aptitude and experience influences on proportional reasoning during adolescence: Focus on male-female differences. Journal for Research in Mathematics Education, 14, 30-46.
    Manjengwa, J. M. (1998). Environmental education for sustainable development in secondary schools in Zimbabwe: A focus on gender differences. International Journal of Environmental Education and Information, 17(1), 17-26.
    National Curriculum Council (1988). Science in the national curriculum. York, UK; NCC.
    Niedelman, M. S. (1990). An investigation of transfer to mathematics of a problem-solving strategy learned in earth sciences. Dissertation Abstracts International, 51(11).
    O’Connell, S. (2000). Introduction to problem solving: Strategies for the elementary math classroom. U.S.:New Hampshire.
    Ohanian, S. (1997). Math that measures up. American School Board Journal, 184(6),25-27.
    Omasta, E. & Lunetta, V. N. (1988). Exploring functions: a strategy for teaching physics concepts and problem-solving. Science Education, 72, 625-636.
    Organization for Economic Co-Operation and Development(2003). The PISA 2003 Assessment Framework – Mathematics, Reading, Science and Problem Solving Knowledge and Skills. Programme for International Student Assessment.
    Rayner-Canham, G. W., & Rayner-Canlam, M. F. (1990). Teaching chemistry problem solving techniques by microcomputer. Journal of Computers in Mathematics and Science Teaching, 9(4), 17-23.
    Resnick, L. B. (1992). Education and learning to think. In M.K. Pearsall(Ed.), Scope, sequence, and coordination of secondary school science(Vol. 2). Washington, D.C.: The National Science Teacher Association.
    Rowell, P. M., Gustafson, B. J., & Guilbert, S. M. (1997). Problem-Solving through technology: An interpretive dilemma. Alberta Journal of Educational Research, 43, 86-98.
    Siegler, R. S. (1991). Chirldren’s thinking (2nd ed.). New Jersey: Prentice-Hall Inc.
    Sipple, C. J. & Sipple, R. J. (1980). Computer dictionary. Howard W. Sams & Co. Inc
    Slack, S. J., & Stewart, J. (1990). High school students' problem-solving performance on realistic genetics problems. Journal of Research in Science Teaching, 27(1), 55-67.
    Smith, M.U. (1991). Toward a unified theory of problem solving. New Jersey: LEA Publishers.
    Thompson, R. B. (1999). Gender differences in preschoolers’ help-eliciting communication. Journal of Genetic Psychology, 160(3), 357-368.
    Thorsland, M. N. & Novak, J. D. (1971). The identification and significance of intuitive and analytic problem solving approaches among college physics students. Science Education, 58(2), 245-265.
    Vermeer, H. J. & Boekaerts, M. (2000). Motivational and gender differences: Sixth-grade students’ mathematical problem-solving behavior. Journal of Education Psychology, 92(2), 308-315.
    Vockell, E. L. & Lobonc, S. (1981). Sex-role stereotyping by high school females in the biological & physical sciences. Journal of Research in Science Teaching, 18, 209-219.
    Wagner, E. P. (2001). A Study comparing the efficacy of a mole ratio flow chart to dimensional analysis for teaching reaction stoichiometry. School Science & Mathematics, 101(1), 10-22.
    Wesney, J. (1977). An analysis of influence of prior cognitive development in physics and in mathematical reasoning on concept attainment in the study of mechanics in introductory college physics. Dissertation Abstracts International, 38, 5379.
    Yore, L. D. & Russow, J. E. (1989). Toward a unified conception of thinking. Paper presented at the Normal Assoc. for Res. In Sci. Teach. Ann. Meet., San Francisco, March 30- April 1, 1989.

    QR CODE