簡易檢索 / 詳目顯示

研究生: 黎懿瑩
論文名稱: 一個發展小二學童乘法概念的行動研究
指導教授: 金鈐
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 269
中文關鍵詞: 分組計數行動研究故事繪本倍的數學語言乘法概念遊戲
英文關鍵詞: action research, counting in grouping, games, language of multiplier, multiplicative conceptions, picture storybook
論文種類: 學術論文
相關次數: 點閱:244下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃作者於在職進修期間,對授課班級的小二學童進行乘法概念行動研究與教學實驗的成果。教學活動的設計採用Anghileri (2006)鷹架學習的3層次教師策略,搭配分組計數概念、倍的數學語言、故事繪本的似真情境以及遊戲與把玩四個核心教學構念,透過在行動中反思和對行動的反思引動每一階段的教學活動。實驗中使用的乘法概念問卷和數學態度量表皆經過預試並修正,在兩階段三循環的研究中進行共四次前後測,並輔以晤談記錄以及研究日誌,蒐集學童乘法概念發展的量化與質化實徵資料。
    經過兩階段三循環的研究之後發現:教學前18位曾經使用乘法算式的學童只有2位具有乘法概念,在等值群組、倍數比較、陣列與組合四類問題中,學童最易瞭解的是陣列和等值群組問題中的乘法概念;經過本教學實驗之後,學童在等值群組問題有98.8%、倍數比較問題97.1%、陣列問題100%、組合問題26.5%達到乘法思維。此外,本班大多數學童乘法概念的共通可能學習路徑是:由加法思維的逐一點數開始,逐漸產生分組計數概念,接著建立倍的概念,並使用倍的語言溝通加法和乘法算式,在逐次的遞迴中逐漸進入乘法思維。同時,由數學態度量表中也顯示:大部分的學童在學習乘法概念的過程中,都曾經獲得正向情意的支撐。這似乎表明:故事繪本和數學遊戲的似真情境營造都具有相當的教育價值。
    依據本研究的結果,個人認為教師在進行小二乘法概念教學時可以依循下列五項原則:對學童可能發生的學習困難,要先預擬因應的教學策略;在教學計畫時,應該採用分組計數活動並以倍的語言溝通;以「乘法是單位量轉換問題」的教學認知,作為發展學童乘法概念的主軸;於教學之前先分析學童的表現,再擬定解決大多數學童表現的教學方案;透過反思、察覺和與伙伴教師的討論,引動自己教學知識和信念的轉變。

    This research is an action research with teaching experiment design on the improvement of 2nd graders’ multiplicative conceptions during author’s teaching. I adopted Anghileri’s (2006) framework of scaffolding practices for learning, cooperating with the four core constructs including counting in grouping, language of multiplier, picture storybook drawing on the real-world settings, and game and playing, to intrigue the teaching activities through the reflection-in-action and reflection-on-action processes. In the experiment, the survey of multiplication conceptions and the measurement of attitudes toward mathematics were pre-tested and revised. There are four pre and post tests in the 2-phase and 3-cycle study. I supplement the study with the record of interviews and study diary, and collect the qualitative and quantitative data of students’ development of multiplication conceptions.

    Through the 2-phase and 3-cycle process, I found that before teaching, only two of eighteen students have multiplication conceptions in the four types of questions related to equal groups, multiplicative comparison, rectangular array and Cartesian product. The students were almost readies to understand the multiplication concept of rectangular array and equal groups. After the experiment, there were 98.8% students having multiple conceptions on equal groups, 97.1% on multiplicative comparison, 100% on rectangular array, and 26.5% on Cartesian product. The hypothetical learning path for most students in the class seemed to be starting at counting in one, then go to counting in grouping, making the conception of multiplicative, using the mathematic language of multiplier, then to link up the addition and multiplication formula. At the same time, the mathematics attitude scales showed that in the process of learning multiplicative concepts most of the students obtain positive emotional support. This seems to indicate that the real-world settings of picture storybooks and mathematical games had its educational values and implications.

    According to the results of the present study, I believe that primary school teachers could follow the following five principle when they teach 2nd graders’ multiplication: for students’ learning difficulties, teachers could make corresponding teaching strategies beforehand; in planning classroom teaching, teachers might adopt activities about counting in grouping and communicate with mathematical language of multiplier; “multiplication is the question of unit conversion” should be recognized as the core to develop students’ multiplicative conceptions; they may try to analyze students’ behaviors before teaching and using relevant teaching strategies to solve most of the students’ problems; through the reflection, observation, and discussion with colleagues, primary school teachers could intrigue the changes of their own pedagogical knowledge and beliefs.

    第一章 緒論 …………………………………………………… 1 第一節 研究動機 …………………………………………………… 1 第二節 研究問題和研究目的 ……………………………………… 5 第二章 文獻探討 ……………………………………………… 7 第一節 國小階段的乘法課程 ……………………………………… 7 第二節 乘法概念的學習 …………………………………………… 16 第三節 乘法概念的教學 …………………………………………… 29 第四節 研究者的預擬架構 ………………………………………… 41 第三章 研究方法 ……………………………………………… 53 第一節 行動研究和教學實驗 ……………………………………… 53 第二節 研究的場域和參與者 ……………………………………… 56 第三節 研究的設計和實施 ………………………………………… 57 第四節 研究的工具 ………………………………………………… 71 第五節 資料的蒐集和分析 ………………………………………… 84 第六節 研究的限制 ………………………………………………… 87 第四章 研究結果 ……………………………………………… 89 第一節 第一階段前測結果 ………………………………………… 89 第二節 第一階段研究結果 ………………………………………… 102 第三節 第二階段前測結果 ………………………………………… 131 第四節 第二階段研究結果 ………………………………………… 153 第五節 學童乘法概念的學習 ……………………………………… 175 第六節 教學實驗的行動研究環 …………………………………… 189 第五章 討論和省思 …………………………………………… 191 第一節 教學成效 ………………………………………………… 191 第二節 教學省思 …………………………………………………… 205 第六章 結論和建議 …………………………………………… 211 第一節 階段性研究的結論與啟示 ………………………………… 211 第二節 接續研究的建議 …………………………………………… 214 參考文獻 ………………………………………………………… 217 附錄 ……………………………………………………………… 227 附錄一 研究問卷 …………………………………………………… 227 附錄二 教學活動設計 ……………………………………………… 241 附錄三 學生晤談資料(範例) …………………………………… 259 附錄四 省思札記(範例) ………………………………………… 267

    中文部分

    王保進(2002)。視窗版SPSS與行為科學研究。台北市:心理。
    王心瑩(譯)(2004)。S. Guevara著。國王的超級特派員(The Kings Commissioners)。台北市:遠流。
    王心瑩(譯)(2005)。C.A. Losi著。噓!螞蟻搬東西(The 512 Ants on Sullivan Street)。台北市:遠流。
    王心瑩(譯)(2005)。T. Slater著。呵,還有一張票(Two Tickets to Ride)。台北市:遠流。
    仁林編輯團隊(2005a)。國民小學數學第三冊。台中市:仁林文化。
    仁林編輯團隊(2005b)。國民小學數學第四冊教師手冊。台中市:仁林文化。
    仁林編輯團隊(2006)。國民小學數學第四冊。台中市:仁林文化。
    牛頓編輯團隊(2002)。國民小學數學第三冊。台北市:牛頓。
    牛頓編輯團隊(2003)。國民小學數學第四冊。台北市:牛頓。
    何素娟(譯)(2001)。C. Kamii & L. Leslie著。重新建構孩子的數學能力.第1級, 小學一年級:皮亞傑理論在教學上的應用。臺北縣:光佑文化。
    谷瑞勉(譯)(1999)。L. E. Berk & A. Winsler著。鷹架兒童的學習:維高斯基與幼兒教育(Scaffolding Children’s Learning: Vygotsky and Early Childhood Education)。台北市:心理。
    呂玉琴(1996)。國小學生的數與計算概念。研習資訊,13(1),58-65。
    吳明隆(2001)。教育行動研究導論: 理論與實務(一版)。臺北市 : 五南。
    吳慧珠、李長燦(2003)。Vygotsky社會認知發展理論與教學應用。載於張新仁(主編),學習與教學新趨勢(105-158)。台北市:心理。
    吳芝儀、廖梅花(譯)(2003)。A. Strauss & J. Corbin著。紮根理論(Basics of qualitative research : thchniques and procedures for developing grounded theory)。臺北市 : 揚智文化。
    吳梅瑛(譯)(2004)。C. Neuschwander著。阿曼達的瘋狂大夢(Amanda Bean’s Amazing Dream)。台北市:遠流。
    吳梅瑛(譯)(2005)。A. Buckless著。哈!宇宙無敵湯(Too Many Cooks!)。台北市:遠流。
    李金泉(1997)。如何精通Spss for windows統計分析 : 統計分析篇。台北市 : 松崗。
    李源順、林福來(1998)。校內數學教師專業發展的互動模式。師大學報:科學教育類,43(2),1-23。
    林邦傑(1986)。統計方法的選擇與統計電腦套裝程式的使用: SPSSX,SAS,BMDP應用指引。台北市 : 正昇教育科學社。
    林清山(譯)(1991)。R.E. Mayer著。教育心理學—認知取向(Educational Psychology : A Cognitive Approach)。台北市:遠流。
    林慧麗(1991)。幼兒解答乘除問題的策略。國立臺灣大學心理學硏究所碩士論文,未出版,臺北市。
    林碧珍(1991)。國小兒童對於乘除法應用問題之認知結構。新竹師院學報,5,221-288。
    林文生、鄔瑞香(1999)。數學教育的藝術與實務 : 另類教與學。台北市:心理。
    林素卿(2002)。教師行動研究導論(初版)。高雄市 : 高雄復文。
    林中斌(2004)。遊戲融入國小數學科教學活動之探究。國立台北師範學院數理教育硏究所碩士論文,未出版,台北市。
    林美珍(編譯)(2004)。R. S. Siegler & M. W. Alibali著。兒童認知發展:概念與應用(Children’s Thinking)。台北市:心理。
    周淑惠(1999)。幼兒數學新論-教材教法。台北市:心理。
    周筱亭、黃敏晃(主編)(2000)。國小數學教材分析—整數的乘除運算。教育部台灣省國民學校教師研習會。
    邱裕淵(2000)。淺談乘法教學。教師之友,41(3),53-57。
    邱皓政(2002)。量化研究與統計分析 : SPSS中文視窗版資料分析範例解析。台北市:五南。
    邱上真(2003)。Piaget認知發展理論與教學應用。載於張新仁(主編),學習與教學新趨勢(81-104)。台北市:心理。
    南一編輯團隊(2006)。國民小學數學第三冊。台北市:南一。
    南一編輯團隊(2007)。國民小學數學第四冊。台北市:南一。
    胡蕙芬(2005)。討論的形式。2006年9月17日,取自http://www.meps.tp.edu.tw/study/upload/04%B2%C4%A4G%B3%B9%A4%A7%A4T%B0Q%BD%D7%AA%BA%A7%CE%A6%A1-%BF%B7%AA%E2.doc。
    洪郁雯、楊德清(2006)。具體表徵融入數學教學之探究。屏東教大科學教育,23,30-38。
    夏林清等譯(1997)。Altrichter, Posch & Somekh著。行動研究方法導論 : 教師動手做研究。台北市 : 遠流。
    桂景星(1990)。團康狄斯耐。台北市:眾文。
    桂冠前瞻教育叢書編譯組(譯)(2000)。A. J., Baroody著。兒童的數學思考(Children's mathematical thinking : a developmental framework for preschool, primary, and special education teachers)。台北市:桂冠。
    徐偉民(2004)。另類數學教學:以“故事”為媒介。屏師科學教育,19,37-45。
    郝廣才(1998)。油炸冰淇淋—繪本在台灣的觀察,美育月刊,91,12。
    康軒編輯團隊(2006)。國民小學數學第三冊。台北市:康軒。
    康軒編輯團隊(2007)。國民小學數學第四冊。台北市:康軒。
    教育部(2001)。國民小學數學第三冊。台北市:國立教育編譯館。
    教育部(2002)。國民小學數學第四冊。台北市:國立教育編譯館。
    教育部國民教育司(2003)。九年一貫課程數學學習領域。2005年8月18日,取自http://teach.eje.edu.tw/9CC/fields/2003/math_7.php。
    教育部(2006)。國民小學數學第三冊。台北市:國立教育研究院籌備處。
    張靜晃(譯)(1992)。J. E. Johnson, J. F. Christie & T. D. Tawkey著。數學遊戲:遊戲發展的理論與實務(Play and Early Childhood Development)。台北市:揚智文化。
    張春興(2001)。教育心理學──三化取向的理論與實踐。台北:東華書局。
    張紹勳(2001)。SAS/PC統計分析與實務應用。台北市 : 松崗。
    張英傑、周菊美(譯)(2005)。J. A. Van De Walle著。中小學數學科教材教法(Elementary and Middle School Mathematics: Teaching Developmentally)。台北市:五南。
    許美華(2000a)。國小二年級學童正整數乘法問題解題活動類型之縱貫研究。屏東師範學院國民教育研究所碩士論文,未出版,屏東市。
    許美華(2000b)正整數乘法問題解題活動類型之變化—以一個國小二年級學童為例。國教學報,12,143-178。
    許美華(2001)國小二年級學童乘法問題解題策略之變化—以三位學童為例。花蓮師院學報,12,173-199。
    許清陽(2001)。乘法除法迷思概念分析及其教學策略--以國小三年級數學科為例。教師之友,42(3),59-63。
    許國輝(譯)(1995)。R. R. Skemp著。小學數學教育:智性學習(Mathematics in the primary school)。香港:香港公開進修學院。
    曹亮吉(1970)。談數學。台北市:科學月刊社。
    黃毅英(1997)。邁向大眾數學的數學教育。台北市:九章出版社。
    黃光雄(主譯)(2001)。R. C. Bogdan & S. K. Biklen著。質性教育研究 : 理論與方法( Qualitative Research For Education:An Introduction to Theory and Methods)。嘉義市:濤石文化出版。
    黃幸美(2004)。兒童的數學問題解決與思考。台北市:心理。
    黃乃文(2005)。一個以函數觀點發展國中生代數思維的行動研究。國立台灣師範大學數學系碩士論文,未出版,台北市。
    陳杭生(1993)。視聽媒體與教學正常化。視聽教育雙月刊,34(3),1-10。
    陳惠邦(1998)。教育行動研究(增訂一版)。台北市 : 師大書苑。
    陳竹村(2000)。發展式數學課程及其教學觀。研習資訊,17(5),15-46。
    陳淑琳(2000)。談新課程對乘法基本教材的處理。屏師科學教育,12,14-22。
    陳淑琳(2002)。國小二年級學童乘法文字題解題歷程之研究-以屏東市一所國小為例。屏東師範學院數理教育研究所碩士論文,未出版,屏東市。
    甯自強(1994)。新課程對乘法啟蒙教材的處理。載於台灣省國民學校教師研習會(主編),國民小學數學科新課程概說(低年級),77-85。台北縣:台灣省國民學校教師研習會。
    游自達(1995)。數學學習與理解之內涵-從心理學觀點分析。國立台中師範學院初等教育研究所初等教育研究期刊,3,31-45。
    彭嘉妮(2006)。資訊和繪本融入數學領域教學--「國王的超級特派員--計算數量的秘密」教學設計。國民教育,46(4),70-75。
    詹勳國、李震甌、莊蕙元、戴政吉、侯美玲(譯)(2004)。M. Nickson著。數學的學習與教學:六歲到十八歲(Teaching and Learning Mathematics)。臺北市:心理。
    廖雅君(譯)(2005)。S.Keenan著。喂!包裹送到(The Trouble with Pets)。台北市:遠流。
    翰林編輯團隊(2006)。國民小學數學第三冊。台北市:翰林。
    鄭肇楨(1980)。數學遊戲。台北市:商務印書館。
    劉湘川、許天維、林原宏(1995)。國小高年級學生乘除問題的解題策略及理解層次之分析研究。八十四學年度師範學院教育學術論文發表會論文輯。
    劉秋木(1996)。國小數學科教學研究。台北市:五南。
    劉鳳芯(2000)。台灣之圖畫書批評語言與討論語彙。毛毛蟲月刊,120,4。
    劉美玲(2002)。以繪本為媒介進行環境議題教學之研究。台北市立師範學院科學教育硏究所碩士論文,未出版,台北市。
    謝如山(譯)(2004)。H. P. Ginsburg。進入兒童心中的世界(Entering the child's mind : the clinical interview in psychological research and practice)。台北市:五南。
    鍾靜(1999)。落實小學數學新課程之意圖與學校本位的進修活動。課程與教學,2(1),15-34。
    鍾靜(2005)。論數學課程近十年之變革。教育研究月刊,133,124-134。
    蘇育任(1993)。漫談遊戲導向的教學設計。國教輔導33(2),8268-8270。
    蘇振明(1998)。認識兒童讀物插畫及其教育性,美育月刊,91,7。
    饒見維(1996)。國小數學遊戲教學法。台北市:五南。
    西文部分

    Anghileri, J. (1989). An investigation of young children’s understanding of multiplication. Educational Studies in Mathematics, 20, 367-385.
    Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9, 33-52.
    Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, Mass., Belknap Press of Harvard University.
    Bell, A. (1993a). Principles for the design of teaching. Educational Studies in Mathematics, 24, 5-34.
    Bell, A. (1993b). Some experiments in diagnostic teaching. Educational Studies in Mathematics, 24, 115-137.
    Berliner, D. (1988). The development of expertise in pedagogy. (ERIC Document Reproducation Service No. ED 298122)
    Bodrova, E. & Leong, D. J. (1996). Tools of the mind : the Vygotskian approach to early childhood education. Englewood Cliffs, NJ: Merrill.
    Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers’ pedagogical content knowledge of students’ problem solving in elementary arithmetic. Journal for Research in Mathematics Education, 19, 385-401.
    Carpenter, T. P., Fennema, E., Peterson, L. P., Chiang, C., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: an experimental study. American Educational Research Journal, Winter , 26(4), 499-531.
    Carpenter, T. P., & Fennema, E. (1992). Cognitively guided instruction: building on the knowledge of students and teachers. In W. Secada (Ed.) , Curricelem reform: The case of mathematics education in the U.S. International Journal of Educational Research, 17, n. 1-6, 457-470.
    Capernter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics Education, 24( 5), 428-441.
    Chapman, O. (1993). Facilitating in-service mathematics teachers self-development. PME XVII, I, 228-235.
    Clark, F. B., & Kamii, C. K. (1996). Identification of multiplicative thinking in children in grade 1-5. Journal for Research in Mathematics Education, 27(1), 41-51.
    Dickson, L., Brown, M., Gibson, O. (1984). Children learning mathematics: a teacher’s guide to recent research. Oxford, Great Britain: the Alden Press Ltd.
    Fennema, E. & Sherman, J. A.(1976). Fennema-Sherman mathematics attitudes scales: instruments designed to measure attitudes toward the learning of mathematics by females and males. Catalog of Selected Documents in Psychology, 6(1), 31, 1-39.
    Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16( 1), 3-17.
    Fennema, E. & Franke, M. L. (1992). Teacher’s knowledge and its impact. In D. A. Grouws (Ed.) , Handbook of research on mathematics teaching and learning, National Council of Teachers of Mathematics(pp. 147-162). New York: Macmillan Publishing Company.
    Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 276-295). Reston, VA: NCTM; NY: Macmillan Publishing Co.
    Greer, B. (1994). Extending the meaning of multiplication and division. In G. Harel & J . Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 61-85). State University of NewYork Press, Albany.
    Gravemeijer, K.(1997). Mediating between concrete and abstract. In T. Nunes & P. Bryant (Eds), Learning and teaching mathematics: an international perspective(pp. 315-345). Hove, Sussex: Psychology Press.
    Hart, K. (Ed.). (1981). Children’s understanding of mathematics: 11-16. London: John Murray.
    Hughes, M. (1986). Children and number: difficulties in learning mathematics. Oxford [Oxfordshire], UK; New York, NY, USA: B. Blackwell.
    Johnson, J. H.(1997). Data-Driven School Improvement. (ERIC Document Reproduction Service No. ED 401595)
    Krulik, S. & Rudnick, J. A. (1983). Strategy game and problem solving an instructional pair whose time has come! The Arithmetic Teacher, 83(12), 26-28.
    Kouba, V. L. (1989). Children’s solution strategies for Equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20( 2), 147-158.
    Kamii, C., & Livingston, S. J. (1994). Young children continue to reinvent arithmetic--3rd grade: implications of Piaget's theory. New York : Teachers College Press.
    Kamii, C., & Clark, F. B. (2000). First graders dividing 62 by 5 [videotape]. New York: Teachers College Press
    Lesh, R. (1979). Mathematical learning disabilities: Considerations for identification, diagnosis, and remediation. In R. Lesh, D. Mierkiewicz, & M. G. Kantowski (Eds.). Applied mathematical problem solving. Columbus, OH: ERIC/SMEAC.
    Lave, J. & Wenger, E. (1991). Situated Learning-Legitimate Peripheral Participation. Cambridge: Cambridge University Press.
    McIntosh, A. (1979), Some Children and Some Multiplications. Mathematics Teaching, 87, 14-15.
    McNiff, J. (1988). Action research: Principles and practice. New York: Macmillan.
    Mulligan, J. T. (1992). Children’s solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), pp. 24-41.
    Mulligan, J. T. & Mitchelmore, M. C. (1997). Young children’s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), pp. 309-330.
    Nesher, P. (1988). Multiplicative School Word Problems: Theoretical Approaches and Empirical Findings. In J. Hiebert & M. Behr (Eds.), Research agenda in mathematics education: Number concepts and operations in the middle grades,(pp.19-40). Hillsdale, NJ:Lawrence Erlbaum.
    Noffke, S.E. (1992). The work and workplace of teachers in action research. Teaching and Teacher Education, 8(1), 15-29.
    NCTM (2000). Principle and Standards for School Mathematics. Reston: NCTM.
    O’Brien, T., & Casey, S. (1983). Children learning multiplication. School Science and Mathematics, 83, 246-251.
    Pirie, S. & Kieren, T., (1991). Folding back: Dynamics in growth of mathematical understanding. Psychology of Mathematics Education 15, 13, 169-176.
    Pirie, S. & Kieren, T., (1994a). Beyond metaphor: Formalising in mathematical understanding within constructivist environments. For the Learning of Mathematics, 14(1), 39-43.
    Pirie, S. & Kieren, T., (1994b). Growth in mathematical understanding: How can we characterize it and how can we represent it ? Educational Studies in Mathematics. 26, 165-190.
    Riedesel, C. A. (1990). Teaching elementary school mathematics. Englewood Cliffs, NJ: Prentice-Hall.
    Starkey, P., & Gelman, R. (1982). The development of addition and sub-traction abilities prior to formal schooling in arithmetic. In T.P. Carpenter, J.M. Moser, & T.A. Rombereg (Eds.), Addition and subtraction: a cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum.
    Schön, D.A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
    Schoenfeld, A. H.(1987). Cognitive science and mathematics education . Hillsdale, NJ: Lawrence Erlbaum Associates.
    Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.
    Schwartz, J. L. (1988). Intensive Quantity and Referent Transforming Arithmetic Operations. In J. Hiebert & M. Behr(Eds.), Research agenda in mathematics education: Number concepts and operations in the middle grades(pp. 41-52). Hillsdale, NJ: Lawrence Erlbaum.
    Steffe, L. P. (1988). Children’s Construction of Number Sequences and Multiplying Schemes. In J. Hiebert & M. Behr(Eds.), Research agenda in mathematics education: N umber concepts and operations in the middle grades (pp. 119-140). Hillsdale, NJ: Lawrence Erlbaum.
    Streefland, L. (1991). Realistic mathematics education in primary school. Utrecht: Freudenthal Institute.
    Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht ; Boston : Kluwer Academic Publishers.
    Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
    Steffe, L. P. & D’ Ambrosio, B.S. (1996). Using Teaching Experiments to Enhance Understanding of Students’ Mathematics. In D. F. Treagust, R. Duit & B. J. Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 65-76). New York: Teachers College Press.
    Steffe, L. P. & Thompson, P. W.(2000). Teaching Experiment Methodology : Underlying Principles and Essential Elements. In A. E. Kelly, & R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education(pp. 267- 306). Mahwah, NJ: L. Erlbaum.
    Treffers, A. (1987). Three dimensions (pp. 239-296). Dordrecht, Holland: D. Reidel Publishing Company.
    Usiskin, Z. and Bell, M. (1983). Applying arithmetic- A handbook of applications of arithmetic (pp. 203-283). Chicago: University of Chicago, Department of Education.
    van den Heuvel-Panhuizen, M. (2001). Children learn mathematics. Utrecht University, The Netherlands : Freudenthal Institute.
    Vergnaud, G. (1983). Multiplicative Structures. In R. Lesh, & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes(pp. 127-174). A Subsidiary of Harcourt Brace Jovanovich, NY: Academic press.
    Von Glasersfeld, E. (1987).Learning as a constructive activity. In C. Javier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 3-17). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Vergnaud, G. (1988), Multiplicative Structures. In J. Hiebert, & M. Behr (Eds.), Research agenda in mathematics education: Number concepts and operations in the middle grades(pp. 141-161). Hillsdale, NJ: Lawrence Erlbaum.
    Vergnaud, G. (1994), Multiplicative Concepyual Field: What and Why? In G. Harel, & J. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 41-59). Albany: State University of NewYork Press.
    Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
    Welchman-Tischler, R. (1992). How to use children's literature to teach mathematics. Reston, VA : National Council of Teachers of Mathematics.
    Wood, T. (1994). Patterns of interaction and the culture of mathematics classrooms. In S. Lerman (Ed.), Cultural perspectives on the mathematics classroom (pp.149-168). Dordrecht; Boston: Kluwer Academic.

    QR CODE