簡易檢索 / 詳目顯示

研究生: 陳瑞青
Chen, Jui-Ching
論文名稱: 非同步視訊面試下人工智慧評鑑功能對求職者科技信任度之影響
The Impact of Artificial Intelligence-based Asynchronous Video Interviews on Job Applicants’ Trust in technology
指導教授: 孫弘岳
Suen, Hung-Yue
口試委員: 陳建丞
Chen, Chien-Cheng
陳怡靜
Chen, Yi-Ching
孫弘岳
Suen, Hung-Yue
口試日期: 2022/06/30
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 非同步視頻面試人工智慧人工智慧信任度
英文關鍵詞: asynchronous video interviews, artificial intelligence (AI), trust in AI
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202201326
論文種類: 學術論文
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新冠疫情來襲,全球人類生活方式已隨之改變;吸引和留住合適的候選人已成為全球大多數組織人力資源管理中最關鍵和戰術性的問題之一,企業為了維持招募作業正常運作,具高度接觸風險的面對面的面
    試,已不再是唯一或主流模式;就像遠距工作一樣,人工智慧有望改變每個行業和每個公司,展望未來,在 Covid-19 之後,幾乎不可避免地加
    速我們在遠距面試模式的導入。
    解決遠距問題的非同步視訊面試成為後疫情時代不可或缺的方式,僅是非同步面試仍無法解決後疫情時代人力不穩定的狀況,必須透過人工智慧的評鑑來增加面試效度,;本研究旨在探討求職者在實際使用非
    同步視頻面試系統時,求職者得知有 AI 評鑑輔助功能下,是否會影響求職者在非同步視頻面試系統下對科技的信任度。
    本研究透過 146 位求職者發現,求職者對具 AI 評鑑的非同步錄影面試相較於沒有 AI 評鑑的面試的錄影面試,有較高的認知信任,但對於認知情感則無顯著性的差異。本研究根據統計調查及分析結果,提供雇主及應徵者使用非同步視頻面試系統的教育指南,同時作導入非同步視頻面試結合人工智慧評鑑功能輔助科技的評估與相關使用者招募的參考依據。

    With the advent of the Artificial Intelligence (AI) era, this research aims
    to explore whether candidates know if the AI assist function will affect the applicants’ trust in technology when they interviewed by an asynchronous video interview system. This study solicited 146 applicants aged between 19 and 55 years old, through a snowball sampling method, and voluntarily participate in the asynchronous video interview system. Upon completion, applicants are required to complete an online questionnaire.
    Through correlation coefficient analysis and multivariate analysis of
    covariance, the study found that AI significantly boosted job applicants’ cognitive trust toward the interview technology; however their affective trust were not singianat difference between AI and Non-AI function in asynchronous video interviews. Based on the results of statistical surveys and analysis, this research provides some implications for employers and application developer when they use the AI-based asynchronous video
    interview system.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 8 第三節 名詞解釋 9 第二章 文獻探討 13 第一節 科技信任度 13 第二節 人工智慧評鑑 15 第三節 人工智慧評鑑與科技信任度 19 第三章 研究設計與實施25 第一節 研究架構 25 第二節 研究假設 26 第三節 研究流程與設計 26 第四節 研究對象 33 第五節 研究工具 35 第六節 資料處理及分析 41 第四章 結果與討論 45 第一節 因素分析 45 第二節 描述性統計及卡方分析 48 第三節 關係係數分析 53 第四節 多變量共變數分析 55 第五章 結論與建議 59 第一節 研究發現 59 第二節 理論貢獻 61 第三節 實務建議 62 第四節 研究限制與未來研究建議 63 第五節 結論 64 參考文獻 67 一、中文部分 67 二、英文部分 68 附 錄 79 附錄一 研究知情同意書81

    一、 中文部分
    水沐由之(2021,9 月 20 日)。信任是認知與情感上的付出。簡書。https://www.twblogs.net/a/614dc32c07f6b160774111a0
    周維忠(2021,11 月 30 日)。人資招募掀起智慧化風潮 AI 徵才面試時代來臨。網管人。https://www.netadmin.com.tw/netadmin/zh-tw/trend/4F195ADA589943618DB430D2FB8404DB
    翁芊儒(2021,3 月 3 日)。AI 面試有新工具!臺師大開發微表情 AI 辨識技術,即時預測應徵者職場性格與溝通能力,輔助 HR 聘雇決策。
    iThome。https://www.ithome.com.tw/news/143000
    陳鼎文(2016,4 月 26 日)。理財:你願意相信人還是機器人?科技橘報。https://buzzorange.com/techorange/2016/04/26/would-you-believe-human-or-robot-in-financial-management/
    陳建鈞(2022,5 月 26 日)。AI 面試官,怎麼知道你的發展潛力?從這 86 個微表情可看出。數位時代。https://www.bnext.com.tw/article/57846/ai-interview-aurora-anymind
    錢國倫、陳怡靜、陳建丞(2013)。工作與組織特性與求職者人格特質之交互作用對組織人才吸引力的影響。人力資源管理學報,13(1),1-32。http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/36409HRDA(2022)。HRDA 智能視頻面試系統 https://hrda.pro
    二、 英文部分
    Allal-Chérif, O., Aránega, A. Y., & Sanchez, R. C. (2021). Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. ScienceDirect, 169.
    doi.org/10.1016/j.techfore.2021.120822
    Anderson, N. (2003). Applicant and recruiter reactions to new technology in
    selection: A critical review and agenda for future research. International Journal of Selection and Assessment, 11, 121-136.
    https://onlinelibrary.wiley.com/doi/10.1111/1468-2389.00235
    Barrick, M. R., Shaffer, J. A., & DeGrassi, S. W. (2009). What you see may not be what you get: relationships among self-presentation tactics and
    ratings of interview and job performance. Journal of Applied Psychology, 94(6), 1394. doi.org/10.1037/a0016532
    Bigman, Y. E., Gray, K., Waytz, A., Arnestad, M., & Wilson, D. (2020). Algorithmic discrimination causes less moral outrage than human discrimination. Journal of Experimental Psychology: General, 1-24.
    doi.org/10.31234/osf.io/m3nrp
    Blacksmith, N., Willford, J., & Behrend, T. (2016). Technology in the Employment Interview: A Meta-Analysis and Future Research Agenda. Personnel Assessment and Decisions, 2(1). 12-20.
    doi.org/10.25035/pad.2016.002
    Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making: An integrative literature review, and implications for the organizational sciences. Organizational Behavior and Human Decision Processes, 101(2), 127–151. doi.org/10.1016/j.obhdp.2006.07.001
    Brenner, F. S., Ortner, T. M., & Fay, D. (2016). Asynchronous Video Interviewing as a New Technology in Personnel Selection: The Applicant’s Point of View [Original Research]. Frontiers in Psychology, 7, 1-11. doi.org/10.3389/fpsyg.2016.00863
    Borzykowski, B. (2016). Truth be told, we’re just more honest with machines. BBC. https://www.bbc.com/worklife/article/20160412-truth-be-told-were-more-honest-with-robots?ocid=twcptl
    Chamorro, T., Akhtar, R., Winsborough, D., & Sherman, R. A. (2017). The datafication of talent: How technology is advancing the science of human potential at work. Current Opinion in Behavioral Sciences, 18,
    13–16. Doi.org/10.1016/j.cobeha 2017.04.007
    Chong, L., Zhang, G., Goucher-Lambert, K., Kotovsky, K., & Cagan, J. (2022). Human confidence in artificial intelligence and in themselves: The evolution and impact of confidence on adoption of AI advice. Computers in Human Behavior, 127, 1-10. doi.org/10.1016/j.chb.2021.107018
    Chua, R. Y. J., Ingram, P., & Morris, M. W. (2008). From the head and the heart: Locating cognition-and affect-based trust in managers’ professional networks. Academy of Management journal, 51(3), 436-452. doi.org/10.5465/amj.2008.32625956
    Christoforakos, L., Gallucci, A., Surmava-Große, T., Ullrich, D., & Diefenbach, S. (2021). Can Robots Earn Our Trust the Same Way Humans Do? A Systematic Exploration of Competence, Warmth, an
    d Anthropomorphism as Determinants of Trust Development in HRI. Frontiers in Robotics and AI, 8, 79. doi.org/10.3389/frobt.2021.640444
    Cheng, M., & Hackett, R. D. (2021). A critical review of algorithms
    in HRM: Definition, theory, and practice. Human Resource Management Review, 31(1), 1-14. Doi.org/10.1016/j.hrmr.2019.100698Derek S. Chapman. & Webster, J. (2003). The Use of Technologies in the Recruiting, Screening, and Selection Processes for Job Candidates. International Journal of Selection and Assessment 11(2). 113-119.
    doi:10.1111/1468-2389.00234
    Dzindolet, M.T., Pierce, L.G., Beck, H.P., & Dawe, L.A. (2002). The perceived utility of human and automated aids in a visual detection task. Human Factors, 2002, 79-94. Doi.org/10.1518/00187200244
    94856
    Endsley, M. R. (2017). From here to autonomy: Lessons learned from human–automation research. Human Factors, 59(1), 5–27. doi.org/10.1177/0018720816681350
    Epley, N., Waytz, A., Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114, 864–886. doi:10.1037/0033-295X.114.4.864
    Escalante, H. J., Kaya, H., Salah, A., Escalera, S., Gucluturk, Y., Guclu,
    U., . . . Madadi, M. (2018). Explaining first impressions: modeling, recognizing, and explaining apparent personality from videos. Cornell University. https://arxiv.org/abs/1802.00745
    Esch, P., & Stewart Black, J., (2019). Factors that influence new generation
    candidates to engage with and complete digital, AI-enabled recruiting.Business Horizons, 62(6), 729-739.
    Doi.org/10.1016/j.bushor.2019.07.004
    Gilmore, D.C., & Ferris, G.R. (1989). The effects of applicant impression management tactics on interviewer judgments. Journal of Management, 15(4), 557-564.doi.org10.1177/014920638901500405
    Glikson, E., & Williams, A., (2020) Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals (in press). The Academy of Management Annals. https://www.res earchgate.net/publication/340605601
    Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., De Visser, E. J., and Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot interaction. Human Fact, 53, 517–527.
    doi.org/10.1177%2F0018720811417254
    Huffcutt,A., Culbertson,C., & Weyhrauch,W. (2014). Moving Forward Indirectly: Reanalyzing the validity of employment interviews with indirect range restriction methodology. International Journal of
    Selection and Assessment, 22(3), 297-309. dio:10.1111/ijsa.12078
    Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical
    evidence on factors that influence trust. Human Factors, 57(3), 407–
    434. Doi.org/10.1177/0018720814547570
    Horn, R. G., & Behrend, T. S. (2016). Video killed the interview star:Does picture-in-picture affect interview performance? Personnel assessment. https://scholarworks.bgsu.edu/cgi/viewcontent.cgi?article=1035&context=pad
    Jenny S. Wesche., & Andreas Sonderegger. (2021). Repelled at first sight?
    Expectations and intentions of job-seekers reading about AI selection in
    job advertisements. Computers in Human Behavior, 125, 1-15.
    doi.org/10.1016/j.chb.2021.106931
    Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
    Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.
    doi.org/10.1177/001316446002000116
    Kulms, P., and Kopp, S. (2018). A social cognition perspective on human–
    computer trust: the effect of perceived warmth and competence on trust
    in decision-making with computers. Front. Digital Humanit, 5, 14. doi: 10.3389/fdigh.2018.00014
    Langer, M., König, C. J., & Krause, K.(2017). Examining digital interviews for personnel selection: Applicant reactions and interviewer ratings. International Journal of Selection and Assessment, 25(4), 371-382.
    doi.org/10.1111/ijsa.12191
    Langer, M., König, C. J., & Papathanasiou, M. (2019). Highly automated job interviews: Acceptance under the influence of stakes. International Journal of Selection and Assessment, 27(3), 217-234.
    doi.org/10.1111/ijsa.12246
    Langer, M., König, C. J., Back, C., & Hemsing, V. (2021). Trust in Artificial
    Intelligence: Comparing trust processes between human and automated
    trustees in light of unfair bias. PsyArXiv Preprints. https://psyarxiv.com/r9y3t/
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. https://www.nature.com/articles/nature14539
    Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for a
    ppropriate reliance. Human Factors, 46(1), 50–80. doi.org/10.1518/hfes.46.1.50.30392
    Lee, M. K. (2018). Understanding perception of algorithmic decisions:
    Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 1-16. doi.org/10.1177/2053951718756684
    Lewis, M., Sycara, K., & Walker, P. (2018). The role of trust in human-robot
    interaction. In Hussein A. Abbass, Jason Scholz, Darryn J. Reid, Foundations of trusted autonomy (pp.135-159). Berlin: Springer.doi.org10.1007/978-3-319-64816-3
    Levashina, J., Hartwell, C. J., Morgeson, F. P., & Campion, M. A. (2014). The structured employment interview: Narrative and quantitative review of the research literature. Personnel Psychology, 67(1), 241-293. doi.org/10.1111/peps.12052
    Liem, C. C., Langer, M., Demetriou, A., Hiemstra, A. M., Wicaksana, A. S., Born, M. P., & König, C. J. (2018). Psychology meets machine learning: Interdisciplinary perspectives on algorithmic job candidate screening. In Hugo Jair Escalante, Sergio Escalera, Isabelle
    Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven, Explainable and interpretable models in computer vision and machine learning (pp.197-253). Berlin: Springer. doi.org/10.
    1007/978-3-319-98131-4_9
    Langer., M., König, C. J., Back, C., & 8 Hemsing, V. Trust in Artificial Intelligence: Comparing trust processes between human and automated trustees in light of unfair bias. Journal of Business and
    Psychology.122(1) 1-16. .http://dx.doi.org/10.31234/osf.io/r9y3t
    Longoni, C.,& Cian, L., (2021). When Do We Trust AI’s Recommendations More Than People’s?. Harvard Business Review Home. https://hbr.org/2020/10/when-do-we-trust-ais-recommendations-more-than-p
    eoples
    Mary T.Dzindolet., Scott Petersona Regina ., Pomranky., Linda G. Pierce., Hall P. Beck.(2003) The role of trust in automation reliance.
    ScienceDirect. 58(6), 697-718. doi.org/10.1016/S1071-5819(03)00038-
    7
    Mara, M., Keshmir,S., Pomranky., & Perugia, G.,(2021) Can Robots Earn
    Our Trust the Same Way Humans Do? A Systematic Exploration of Competence, Warmth, and Anthropomorphism as Determinants of Trust Development in HRI. Frontiers in Robotics and AI. 1-15.
    doi.org/10.3389/frobt.2021.640444
    Mayer, R. C., Davis, J. H., and Schoorman, F. D. (1995). An integrative model of organizational trust. The Academy of Management Review, 20(3), 709–734. doi: 10.5465/amr.1995.9508080335
    Mejia, C., & Torres, E. N. (2018). Implementation and normalization process of asynchronous video interviewing practices in the hospitality industry. International Journal of Contemporary Hospitality Management, 30(2), 685-701. doi.org/10.1108/ijchm-07-2016-0402
    Meyer, E. (2015). Building Trust Across Cultures. 74nstead Knowledge,
    https://knowledge.insead.edu/blog/74nstead-blog/building-trust-across-cultures-3844
    Nestler, S., & Back, M. D. (2013). Applications and extensions of the lens
    model to understand interpersonal judgments at zero acquaintance.
    Current Directions in Psychological Science, 22(5), 374-379.
    doi.org/10.1177/0963721413486148
    Nestler, S., Egloff, B., Küfner, A. C., & Back, M. D. (2012). An integrative lens model approach to bias and accuracy in human inferences: Hindsight effects and knowledge updating in personality judgments. Journal of personality and social psychology, 103(4), 689.
    doi.org/10.1037/a0029461
    Ö tting, S. K., & Maier, G. W. (2018). The importance of procedural justice
    in human–machine interactions: Intelligent systems as new decision agents in organizations. Computers in Human Behavior, 89, 27-39.
    doi.org/10.1016/j.chb.2018.07.022
    Pathak, A., & Rana, S. (2021). Transforming Human Resource Functions
    with Automation. Pennsylvania : IGI Global, 192.
    https://www.igi-global.com/gateway/book/244371
    Pessach, D., Singer, G., Avrahami, D, Chalutz, H., Shmueli, E., & Ben-Gal,
    I., (2020). Employees recruitment: A prescriptive analytics approach via
    machine learning and mathematical programming. ScienceDirect, 134,
    11-18. doi.org/10.1016/j.dss.2020.113290
    Potosky, D. (2008). A conceptual framework for the role of the administration medium in the personnel assessment process. Academy of Management Review, 33(3), 629- 648.
    https://www.jstor.org/stable/20159428
    Powers, S. R., Rauh, C., Henning, R. A., Buck, R. W., & West, T. V. (2011).
    The effect of video feedback delay on frustration and emotion communication accuracy. Computers in Human Behavior, 27(5), 1651–
    1657. doi.org/10.1016/j.chb.2011.02.003
    Raisch, S., & Krakowski, S. (2021). Artificial intelligence and managemen
    t: The automation–augmentation paradox. Academy of Management Rev
    iew, 46(1), 192-210. https://www.igi-global.com/gateway/chapter/269762
    Rao, A., & Cameron, E. (2018). The Future of Artificial Intelligence
    Depends on Trust. If it is to drive business success, AI cannot hide in a black box. Strategy+ business.https://www.strategy-business.com/article/The-Future-of-Artificial-Intelligence-Depends-on-Trust
    Roth, P. L., & Huffcutt, A. I. (2013). A meta-analysis of interviews and cognitive ability: Back to the future? Personnel Psychology, 12, 157-169. doi:10.1027/1866-5888/a000091
    Komiak, & Benbasat. (2006). The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. MIS Quarterly, 30(4), 941-960. https://doi.org/10.2307/25148760
    Sheridan Wall & Hilke Schellmann. (2021). Archive page, Looking for
    work? Here’s how to write a résumé that an AI will love. MIT Technology Review. https://www.technologyreview.com/about/
    Shijiao (Joseph) Chen., DoniaWaseem., Zhenhua (Raymond) Xia., Khai Trieu Tran., YiLi., & Jun Yaoa1(2021). To disclose or to falsify: The effects of cognitive trust and affective trust on customer cooperation in
    contact tracing. International Journal of Hospitality Management, 94.&Doi.org/10.1016/j.ijhm.2021.102867
    Suen, H.-Y., Chen, M. Y.-C., & Lu, S.-H. (2019). Does the use of synchrony
    and artificial intelligence in video interviews affect interview ratings and applicant attitudes? Computers in Human Behavior, 98, 93-101.
    doi:org/10.1016/j.cviu.2016.01.009
    Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2019). TensorFow-based auto matic personality recognition used in asynchronous video interviews. IEEE Access, 7, 61018-61023. Doi.org/10.1109/ACCESS.2019.29
    02863
    Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2020). Intelligent video interview agent used to predict communication skill and perceived personality traits. Human-centric Computing and Information Sciences, 10(1), 1-12.Doi.org/10.1186/s13673-020-0208-3
    Swider, B. W., Barrick, M. R., & Harris, T. B. (2016). Initial impressions:
    What they are, what they are not, and how they influence structured
    interview outcomes. Journal of Applied Psychology, 101(5), 625.
    Doi.org/10.1037/apl0000077
    Stanton ,B.& Jensen, T. (2021). Trust and Artificial Intelligence. Maryl
    and: National Institute of Standards and Technology. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligen
    ce in Human Resources Management: Challenges and a path forward. California Management Review, 61(4), 15-42. doi.org/10.1177/0008125619867910
    Tschöpe, N., & Brandt, O. (2020). The Impact of AI on Asynchronous
    Video Interviews. AON Talent Assessment Blog. https://insights.hum
    ancapital.aon.com/talent-assessment-blog/the-impact-of-ai-on-asynchronous-video-interviews
    Wang, L. (2019). Breaking the AI black box, what is the Trustable AI that governments are striving to develop. Tech Orange AppWorks Accelerator. https://buzzorange.com/techorange/2019/06/06/trustable-ai/
    Wang, W., Qiu, L., Kim, D., & Benbasat, I. (2016). Effects of rational and social appeals of online recommendation agents on cognition- and affect-based trust. Decision Support Systems, 86, 48–60.
    doi.org/10.1016/j.dss.2016.03.007
    Whitener, E. M. (1997). The impact of human resource activities on employee trust. Human Resource Management Review, 7(4), 389-404. https://doi.org/10.1016/S1053-4822(97)90026-7
    Yagoda, R. E., & Gillan, D. J. (2012). You want me to trust a ROBOT? The development of a human–robot interaction trust scale. International Journal of Social Robotics, 4(3), 235-248. doi.org/10.1007/s12369-012-0144-0

    下載圖示
    QR CODE