簡易檢索 / 詳目顯示

研究生: 施瑞雯
Shih, Rui-Wen
論文名稱: 蓮霧幼果分離物 ─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠之影響
Effects of vescalagin and gallic acid isolated from unripe wax apple fruit on high-fructose diet-induced prediabetic rats
指導教授: 沈賜川
Shen, Szu-Chuan
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 180
中文關鍵詞: 糖尿病前期胰島素阻抗發炎反應VescalaginGallic acid
英文關鍵詞: Prediabetes mellitus, insulin resistance, inflammation, Vescalagin, Gallic acid
論文種類: 學術論文
相關次數: 點閱:300下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病患者中約有95%屬於第二型糖尿病,其主因多為胰島素阻抗而導致高血糖之情況。已有許多文獻證實桃金孃科 ( Myrtaceae family ) 植物具抗糖尿病之效用,本研究室先前以桃金孃科植物中的蓮霧幼果萃取物為材料,經分離、純化、鑑定與胰島素阻抗細胞模式試驗後,確認具有抗糖尿病潛力的活性化合物 Vescalagin 與 Gallic acid 。本研究進一步進行動物實驗,探討 Vescalagin與 Gallic acid 對以高果糖飼料誘導之高血糖、高胰島素血症糖尿病前期大鼠肝臟組織中胰島素阻抗與醣類代謝之影響,並探討其對改善糖尿病前期大鼠體內抗發炎與抗氧化之效果。
    結果顯示,Vescalagin與 Gallic acid具有明顯降低高果糖飼料誘導糖尿病大鼠血糖之效果。西方墨點法分析結果顯示,在胰島素訊息傳遞部分, Vescalagin與 Gallic acid 可以增加胰島素受器( insulin receptor,IR )、胰島素受器受質( insulin receptor substrate-1,IRS-1 ) 、磷酸肌醇3激酶 ( Phosphatidylinositol-3 kinase,PI3K ) 、 AKT/蛋白激酶B ( AKT/Protein kinase B,AKT/PKB )、葡萄糖轉運蛋白2 ( glucose transporter-2,GLUT2 )等蛋白質之表現量。在醣類代謝部分, Vescalagin 與 Gallic acid 可以增加糖解作用酵素,包括 Hexokinase 、 Phosphofructokinase 與 Aldolase 之蛋白質表現量;肝醣合成酵素,如Glycogen synthase 之表現亦增加;然而糖質新生作用酵素,如 Frucotse-1,6-bisphosphatase 之表現會降低;而在磷酸五碳糖途徑酵素,如Glucose-6-phosphate dehydrogenase 之表現亦會增加。在抗發炎反應部分, Vescalagin 與 Gallic acid 降低了 NF-κB 路徑中的 NF-κB、COX-2、MCP-1 與 ICAM-1等發炎反應相關蛋白質之表現量。在抗氧化部分, Vescalagin 與 Gallic acid 則是增加了 SOD、Catalase 與 Glutathione peroxidase 酵素之活性,並且降低了體內脂質過氧化之程度。根據上述結果推測,蓮霧幼果分離物─ Vescalagin與 Gallic acid 可能藉由降低發炎反應及氧化壓力,因而改善高果糖飼料誘發之糖尿病前期大鼠胰島素阻抗現象,並調節醣類的正常代謝與利用。

    Around 95% of the diabetic incidences belong to Type 2 diabetes mellitus (Type 2 DM). Type 2 DM is characterized as the insulin resistance and leaded to hyperglycemia. Previous studies have been confirmed the anti-diabetic effect of Myrtaceae family plants. Our laboratory previously found that vescalagin and gallic acid from wax apple, belongs to Maytaceae family plant and is one of important economic fruits in Taiwan and Oriental, fruit possessed potential on anti-diabetic in insulin resistance cell model. In the present study, we investigated the effect of vescalagin and gallic acid from pink wax apple on ameliorating carbohydrate metabolism, insulin resistance, anti-inflammation and antioxidation in vivo in high fructose diet (HFD)-induced prediabetic rats.
    The results show that vescalagin and gallic acid from pink wax apple significantly decrease blood glucose level in HFD-induced prediabetic rats. The Western blot analysis reveals vescalagin and gallic acid promote the expression of insulin signaling-associated protein, including insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), AKT/Protein kinase B (AKT/ PKB) and glucose transporter-2 (GLUT2) in HFD rats. In the aspect of carbohydrate metabolism in liver, the results revealed that vescalagin and gallic acid increases the protein expression of glycolysis enzymes, including hexokinase, phosphofructokinase and aldolase; increases the protein expression of glycogen synthase; decreases the protein expressions of frucotse-1,6-bisphosphatase; increases the protein expression of glucose-6-phosphate dehydrogenase. Vescalagin and gallic acid decreased the expression of inflammatory factors, such as NF-κB, COX-2, MCP-1 and ICAM-1 I D in HFD rats. Vescalagin and gallic acid also increased the activity of anti-oxidative enzymes, including SOD, catalase and glutathione peroxidase, and decrease the production of MDA in lipid peroxidation.
    In conclusion, vescalagin and gallic acid from pink wax apple fruit may decrease blood glucose level via their anti-inflammation and anti-oxidation stress abilities, therefore subsequently ameliorate the insulin resistance and carbohydrate metabolism in high fructose diet-induced prediabetic rats.

    第一章、 前言 …………………………………………………………………1 第二章、 文獻回顧 ……………………………………………………………3 第一節 糖尿病 ………………………………………………………………3 一、 糖尿病流行病學………………………………………………………3 二、 糖尿病之定義…………………………………………………………3 三、 糖尿病分類……………………………………………………………6 第二節 胰島素 ………………………………………………………………10 一、 胰島素簡介…………………………………………………………10 二、 胰島素之作用………………………………………………………10 三、 胰島素於細胞層次之作用…………………………………………11 四、 胰島素訊息傳遞路徑………………………………………………12 五、 胰島素與三大營養素代謝之作用 ………………………………18 第三節 胰島素阻抗………………………………………………………20 一、 胰島素阻抗 ……………………………………………………20 二、 高果糖飲食與胰島素阻抗 ……………………………………20 三、 細胞內氧化壓力與胰島素阻抗………………………………22 四、 發炎反應與胰島素阻抗………………………………………24 第四節 體內抗氧化系統………………………………………………27 一、自由基與活性氧之簡介…………………………………………27 二、自由基對生物體之傷害…………………………………………28 三、體內的抗氧化系統………………………………………………29 第五節 抗糖尿病物質與酚類化合物………………………………33 一、 常見之抗糖尿病藥物 ……………………………………33 二、 酚酸化合物與糖尿病 ……………………………………35 第六節 蓮霧幼果分離物─Vescalagin與Gallic acid……………39 一、 蓮霧幼果分離物─Vescalagin與Gallic acid……………39 二、 Vescalagin …………………………………………………39 三、 Gallic acid…………………………………………………40 第三章、 研究動機與實驗架構…………………………………………42 第一節 研究動機與目的………………………………………………42 第二節 實驗架構…………………………………………………………43 第四章、 材料與方法……………………………………………………44 第一節 蓮霧幼果分離物─Vescalagin與Gallic acid之製備……44 第二節 實驗材料………………………………………………………46 第三節 實驗步驟與方法………………………………………………51 第五章、 結果……………………………………………………………63 第一節 蓮霧幼果分離物─ Vescalagin 對高果糖飼料誘導糖尿病前期大鼠 之影響……………………………………………………………63 一、 蓮霧幼果分離物─ Vescalagin 對高果糖飼料誘導糖尿病前期大鼠生理、生化之影響………………………………………………63 二、 蓮霧幼果分離物─ Vescalagin對高果糖飼料誘導糖尿病前期大鼠肝臟醣類代謝、胰島素訊息傳遞與發炎反應之影響…………70 第二節 蓮霧幼果分離物─ Gallic acid 對高果糖飼料誘導糖尿病前期大鼠之影響…………………………………………………………76 一、 蓮霧幼果分離物─ Gallic acid對高果糖飼料誘導糖尿病前期大鼠生理、生化之影響………………………………………………76 二、 蓮霧幼果分離物─ Gallic acid對高果糖飼料誘導糖尿病前期大鼠肝臟醣類代謝、胰島素訊息傳遞與發炎反應之影響…………83 第六章、 討論……………………………………………………89 第一節、 粉紅種蓮霧幼果分離物─Vescalagin對高果糖飼料誘導糖尿病前期大鼠之影響…………………………………………………………89 一、 蓮霧幼果分離物─ Vescalagin 對高果糖飼料誘導糖尿病前期大鼠生理、生化之響……………………………………………………89 二、 蓮霧幼果分離物─ Vescalagin對高果糖飼料誘導糖尿病前期大鼠肝臟蛋白質表現量之影響…………………………………………98 第二節、 粉紅種蓮霧幼果分離物─ Gallic acid 對高果糖飼料誘導糖尿病前期大鼠之影響……………………………………………………109 一、 蓮霧幼果分離物─ Gallic acid 對高果糖尿病前期大鼠生理、生化之影響……………………………………………………………109 二、 蓮霧幼果分離物─ Gallic acid對高果糖飼料誘導糖尿病前期大鼠肝臟蛋白質表現量之影響…………………………………………118 第七章、 結論…………………………….………………………129 第八章、 參考文獻………………………………………………162 第九章、 附件……………………………………………………180 圖次 圖 2-1、胰島素調節之代謝作用………………………………………………11 圖 2-2、胰島素訊息傳遞路徑…………………………………………………12 圖 2-3、葡萄糖轉運蛋白之基本構型…………………………………………15 圖 2-4、小腸上皮細胞葡萄糖運送方式………………………………………15 圖 2-5、氧化壓力活化絲胺酸激酶誘導胰島素阻抗…………………………22 圖 2-6、肝臟組織中番木鱉甘抗氧化之機制…………………………………26 圖 2-7、自由基與活性氧的生成途徑…………………………………………28 圖 2-8、Hydroxycinnamic acid 與 Hydroxybenzoic acid 之化學結構……...................................................36 圖 2-9、Vescalagin 結構圖……………………………………………….41 圖 2-10、Gallic acid 結構圖……………………………………………41 圖 3-1、實驗架構……………………………………………………………43 圖 5-1、蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導 糖尿病前期大鼠攝食量之影響…………………………131 圖 5-2、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠體重之變化………………………………132 圖 5-3、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠空腹血液葡萄糖濃度之變化……………133 圖 5-4、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠血中胰島素濃度之變化…………………134 圖 5-5、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠血中 C-胜肽濃度之變...………………135 圖 5-6、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠 HOMA-IR Index之變化…………………136 圖 5-7、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠血中果糖胺之變化…………………………137 圖 5-8、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠口服葡萄糖耐受性之變化…………………138 圖 5-9、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠口服葡萄糖耐受性曲線下面積之變化……139 圖5-10、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠血中游離脂肪酸之變化……………………140 圖5-11、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠血中三酸甘油酯濃度之變化………………141 圖5-12、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠肝臟體重之變化……………………………142 圖5-13、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠脂質過氧化物之變化………………………143 圖5-14、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠超氧歧化酶之變化…………………………144 圖5-15、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠觸媒之變化…………………………………145 圖5-16、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠麩胱甘肽過氧化酶之變化……………..…146 圖5-17、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠六碳醣激酶之表現…………………………147 圖5-18、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠磷酸果糖激酶之表現………………………148 圖5-19、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠醛縮酶之表現………………………………149 圖5-20、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠肝醣合成酶之表現…………………………150 圖5-21、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠果糖-1,6-二磷酸酶之表現………………151 圖5-22、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠葡萄糖-6-磷酸脫氫酶之表現……………152 圖5-23、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠胰島素受器之表現……………………………153 圖5-24、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠胰島素受器受質之表現………………………154 圖5-25、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠磷酸肌醇3激酶之表現………………………155 圖5-26、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠AKT/ PKB之表現……………………………156 圖5-27、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠葡萄糖轉運蛋白-2之表現………………….157 圖5-28、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠細胞核轉錄因子之表現………………………158 圖5-29、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠環氧化酶-2之表現……………………………159 圖5-30、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠單核球趨化蛋白-1之表現……………………160 圖5-31、管餵蓮霧幼果分離物─ Vescalagin 與 Gallic acid 對高果糖飼料誘導糖尿病前期大鼠細胞間黏附分子-1之表現……………………161 圖 7-1、蓮霧幼果分離物─ Vescalagin 與 Gallic aicd 改善高果糖飼料誘導糖尿病前期大鼠胰島素阻抗、醣類代謝、抗發炎可能之機制…162 表次 表 2-1、糖尿病診斷標準……………………………………………………5 表2-2、輔助性葡萄糖轉運蛋白種類………………………………………17

    何橈通。糖尿病與公共衛生。臨床醫學。1986。17:300-317。
    沈德昌、顏兆熊。第二型糖尿病藥物治療新知。台灣醫界。2008。51:22-27。
    吳寧容。番石榴萃出物對streptozotocin-nicotinamide 誘發第二型糖尿病大白鼠血糖之影響。國立台灣大學食品科技研究所碩士論文。2007。
    林進丁。胰島素。藥學雜誌。1986。2:57-63。
    張文昌。食用桃金孃科植物萃取物減輕小鼠肝臟細胞(FL83B)胰島素阻抗之探討。國立台灣大學食品科技研究所碩士論文。2010。
    張巧俐。粉紅種蓮霧幼果水萃物減輕以腫瘤壞死因子(TNF-α)處理之小鼠肝臟細胞(FL83B)胰島素阻抗及改善醣類代謝之研究。2011。
    黃智生。科學發展。2008。422。
    蘇慧真。中藥葛根速降血糖作用之研究。國立成功大學藥理學研究所碩士論文。2001。
    Abei H. Catalase. In : Methods of enzymatic Analysis. Bergmeyer, H. U. ed.,
    Weinhein Deerfield beach, FL : USA pp, 1983, 673-686.
    Abou-Seif, M. A.; Youssef, A. A. Oxidative stress and male IGF-1 gonadotropin and related hormones in diabetic patients. Clin. Chem. Lab. Med, 2001, 39, 618-623.
    Adisakwattana, S.; Roengsamarn, S.; Hsu, W. H.; Yibchok-anun, S. Mechanisms of
    Antihyperglycemic effect of p-methoxycinnamic acid in normal and
    Streptozotocin-induced diabetic rats. Life Sciences. 2005, 78, 406-412.
    Andallu, B.; Varadacharyulu, NCh. Antioxidant of mulberry ( Morus indica L. cv. Anantha ) leaves in streptozocin-diabetic rats. Clin. Chim. Acta, 2003, 338, 3-10.
    Arthur C. Guyton MD. Text book of medical physiology. 2005.
    Baldwin, S. A. Mammalian passive glucose transporters: members of a ubiquitous
    family of active and passive transport proteins. Biochem. Biophys. Acta. 1993,
    1154, 17-49.
    Bell, G. I.;Kayano, T.; Buse, J. B.; Burant, C. F.; Takeda, J.; Lin, D.; Fukumoto, H.
    and Seino, S. Molecular biology of mammalian glucose transporters. Diabetes
    Care. 1990, 13, 198-208.
    Bellacosa, A.; Testa, J. R.; Staal, S. P.; Tsichlis, P. N. A retroviral oncogene, akt,
    encoding a serine-threonine kinase containing an SH2-like region. Science. 1991, 254, 274-277.
    Bergman, R. N.; Ader, M. Free fatty acids and pathogenesis of type 2 diabetes
    mellitus. Trends Endocrinol. Metab. 2000, 1, 351-356.
    Bezerra, R. M.; Ueno, M.; Silva, M. S.; Tavares, D. Q.; Carvalho, C. R.; Saad, M. J. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr. 2000, 130, 1531-1535.
    Bhatia, S.; Shukla, R.; Venkata Madhu, S.; Kaur Gambhir, J.; Madhava Prabhu, K. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin. Biochem, 2003, 36, 557-562.
    Bieger, W. P.; Michel, G.; Barwich, D.; Biehl, K.; Wirth, A. Diminished insulin
    receptor on monocytes and erythrocytes in hypertriglyceridemia. Metabolism.
    1984, 33, 982-987.
    Bjӧrnholm, M.; Zierath, J. R. Insulin signal transduction in human skeletal muscle:
    identifying the defects in type II diabetes. Biochem. Soc. Trans. 2005, 33,
    354-357.
    Brady, M. J.; Nairn, A. C.; Saltiel, A. R. The regulation of glycogen synthase by
    protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for
    DARPP-32 in insulin action. J. Biol. Chem. 1997, 272, 29698-29703.
    Braunwald, E. The Denolin lecture. Congestive heart failure: a half century perspective. Eur. Heart J. 2001, 22, 825-836.
    Brawn, K.; Fridovich, I. DNA strand scission by enzymatically- generated oxygen
    Radicals. Arch. Biochem. Biophys, 1981, 206, 414-419.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications.
    Nature, 2001, 414, 813-820.
    Bunn, H.F.; Gabbay, K.H.; Gallop, P.M. The glycosylation of hemoglobin : relevance to diabetes mellitus. Science, 1987, 200, 21-27.
    Burton, G.W. Vitamin E : molecular and biological function. Proc. Nutr. Soc, 1994, 53: 251-262.
    Butler, A. A.; LeRoith, D. Tissue-specific versus generalized gene targeting of the igflr genes and their roles in insulin-like growth factor physiology. Endocrinology. 2001, 142, 1685-1688.
    Ceriello, A. Oxidative stress and glycemic regulation. Metabolism. 2000, 49, 27-29.
    Chan H. P.; Takashi T.; Ji H. K.; Eum J. C.; Jong C. P.; Naotoshi. S.; Takako. Y. Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology. 2011, 50824, 1-8.
    Cho, H. J.; Seon, M. R.; Lee, Y. M.; Kim, J.; Kim, J. K.; Kim, S. G.; Park, J.H. Y.
    3,3’-diindolymethane suppresses the inflammatory response to
    lipopolysaccharide in murine marcrophages. J. Nutr. 2008, 138, 17-23.
    Chuang, L. M.; H. P.; Jou, T. S.; Tsai, W.Y.; Chang, H. M.; Lin, B. J.; Tai, T. Y. Transcomplementation of HLA DQAI-DQBI in the DR3/DR4 and DR/ DR9 heterozygotes in Chinese IDDM living in Taiwan. Diabetes Care. 1995, 18, 1483-1486.
    Cichy, S. B.; Uddin, S.; Danilkovich, A.; Guo, S.; Klippel, A.; Unterman, T. G. Protein kinase B/ Akt mediates effect of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J. Biol Chem. 1998, 273, 6482-6487.
    Cross, D. A.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.; Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378, 785-789.
    Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005, 111, 1448-1454.
    Dandona, P.; Aljada, A.; Mohanty, P.; Ghanim, H.; Hamouda, W.; Assian, E.; Ahmad, S. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J. Cli. n Endocrino. l Metab. 2001, 86, 3257-3265.
    Del Prato, S., Leonetti, F.; Simonson, D.C.; Sheehan, P.; Matsuda, M.; DeFronza R. A. Effect of sustained physiologic hyperinsulinamia and hyperglycemia on insulin secretion and insulin sensitivity in man. Diabetologia. 2004, 37, 1025-1035.
    Deprez, J.; Vertommen, D.; Alessi, D. R.; Hue, L.; Rider, M. H. Phosphorylation and activation of heart 6-phosphofucto-2-kinase by protein kinase B and other protein kinase of the insulin signaling cascades. J. Biol. Chem, 1997, 272, 17269-17275.
    Doba, T., Butrton, G.W., Ingold, K.U. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidantion of aqueous multilamellar phospholipids liposomes. Biochem. Biophys. Acta, 1985, 835: 298-303.
    EI-Mesallamy, H.; Suwailem, S.; Hamdy, N. Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators. Inflamm, 2007,73635, 1-7.
    Evans, J. L.; Goldfine, I. D.; Maddux, B. A.; Grodsky, G. M. Are oxidative stress-actived signaling pathway mediators of insulin resistance and β-cell dysfunction? Diabetes. 2003, 52, 1-8.
    Fang, YZ.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18, 872-879.
    Ferrannini, E. Insulin resistance versus insulin deficiency in non-dependent diabetes mellitus: problems and prospects. Endocr. Rev. 1998, 19, 477-490.
    Ferre, J. C.; Favre, C.; Gomis, R. R.; Femandez-Novell, J. M.; Garica-Rocha, M.; de la Iglesia, N.; Cid, E.; Guinovart, J. J. Control of glycogen deposition. FEBS Letter, 2003, 546, 127-132.
    Frei, B., England, L., Ames, B. N. Ascobates is outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA, 1989, 86: 6377-6381.
    Goda, T.; Yamada, K.; Sugiyama, M.; Moriuchi, S.; Hosoya, N. Effect of sucrose and acarbose feeding on the development of streptozotocin-induced diabetic in the rat. J. Nutri. Sci. Vita. 1982, 28, 41-56.
    Gould, G. W. and Holman, G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 1993, 295, 329-341.
    Griesmacher, A.; Kindhauser, M.; Andert, S. E.; Schreiner, W.; Toma, C.; Knoebl, P.; Pietschmann, P.; Prager, R.; Schnack, C.; Schernthaner, G. and Mueller, M. M. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am. J. Med. 1995, 98, 468-475.
    Gurib-Fakim, A. Phytochemical screening of 38 Mautitian Medicinal Plants. Rev. Agric. Sucrie ŕe de l’I le Maurice. 1996,69,42-50.
    Halliwell, B.; Murcia, MA.; Chirico, S.; Aruoma, OI.; Free redicals and antioxidants in food and in vivo : what they do and how to work. Crit. Rev. Food Sci, 1995, 35, 7-20.
    Hariom Yadav, M.Sc.; Shalini Jain, M. Sc.; P. R. Sinha, M. Sc. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 2007, 23, 62-68.
    Hayden, M. S.; Ghosh, S. Shared principles in NF-κB signaling. Cell. 2008, 132, 344-362.
    Hummel, K. P.; Dickie, M. W.; Coleman, D. L. Diabetes, new mutation in the mouse. Science (Wash DC). 1966, 153, 1127-1128.
    Hunt, J. V.; Smith, C. C.; Wolff, S. P. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes, 1990, 39, 1420-1424.
    Hyakukoku, M.; Higashiura, K.; Ura, N.; Murakami, H.; Yamaguchi, K.; Wang, L.; Furuhashi, M.; Togashi, N.; Shimamoto, K. Tissue-specific impairment of insulin signaling in vasculature and skeletal muscle of fructose-fed rats. Hypertens Res. 2003, 26, 169-176.
    Inoue, M.; Suzuki, R.; Sakaguchi, N.; Li, Z.; Takeda, T.; Ogihara, Y.; Jiang, B. Y.; Chen, Y. Selective induction of cell death in cancer cells by gallic acid. Biol Pharm. Bull. 1995, 18, 1526-1530.
    Isabelle, H.F.; Rachida, B.; Sara, C.; Richard, A.A.; Anne, M.R. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. Journal of the American College of Nutrition, 2009, 28, 4, 355-361.
    Ito, H.; Miyake, M.; Nishitani, E.; Miyashita, K.; Yoshimura, M.; Yoshida, T.; Takasaki, M.; Konoshima, T.; Kozuka, M.; Hatano, T. Coeaniin, a C-glucosidic ellagitannin dimer linked through catechin from Cawania Mexicana. Chem. Pharm. 2007, 3, 492-494.
    Ivy, J. L.; Sherman, W. M.; Cuyler, C. L.; Katz, A. L. Exercise and diet reduce muscle insulin resistance in obese Zucker rat. Am. J. Physiol, 1986, 251, E229-E305.
    James, D. E. The mammalian facilitative glucose transporter family. Int. Union Physiol. Sci., 1995, 10, 67-71.
    Jérôme, B.; Elyett, G.; Edmond, R.; Christian, D.; Andrzej, M.; Yves, R. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. Nutrient Interactions and Toxicity, 2003, 133, 1903-1908.
    Johnson, A. B.; Webster, J. M.; Sum, C. F.; Heseltine, L.; Argyraki, M.; Cooper, B. G. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type 2 diabetic patients. Metabolism. 1993, 42, 1217-1222.
    Joost, H. G.; Bell, G. I.; Best, J. D.; Birnbaum, M. J.; Charron, M. J.; Chen, Y. T.; Doege, H.; James, D. E.; Lodish, H. F.; Moley, K. H. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. An. J. Physiol. 2002, 282, E974-E976.
    Julia J.; Jerzy, J.; Monika, W.; Adam, J.; Boguslaw, K.; Zenon, Z. Polyphenol-rich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. J. of Nutr., 2011, 141, 1777-1783.
    Kawai, T.; Hirose, H.; Seto, Y.; Fujita, H.; Fujita, H.; Ukeda, K.; Saruta, T. Troglitazone ameliorate lipotoxicity in the beta cell line INS-1 expression PPAR gamma. Diabetes Res. Clin. Pract. 2002, 56, 83-92.
    Kawamura, T.; Yoshida, K.; Sugawara, A. Impact of exercise and angiotensin converting enzyme inhibition on tumor necrosis factor-alpha and leptin in fructose-fed hypertensive rats. Hypertension Res Clin Exp. 2002, 25, 919-926.
    Keaney, J.R., Frei, B. Antioxidant protection of low-density lipoprotein and its role the prevention of atherosclerotic vascular disease. In “Nutrue Antioxidants in Human Health and Disease.” Ed. By Frei. Academic Press: San Diego, CA,1994, 303-351.
    Keilson, L.; Mather, S.; Walter, Y. H. Synergistic effect of netegtlinide the meal administration on insulin secretion in patients with type 2 diabetic mellitus. J. Clin. Endocrinol. Metab. 2000, 85, 1081-1086.
    Kelley, G. L.; Allan, G.; Azhar, S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology. 2004, 145, 548-555.
    Kido, Y.; Burks, D. J.; Withers, D.; Bruning, J. C.; Kahn, C. R.; White, M. F.; Accili, D. Tissue-apecific insulin resistance in mice with mutations in insulin receptor, IRS-1 and IRS-2. J. Clin. Invest. 2000, 105, 199-205.
    Kim, D. O.; Lee, K. W.; Lee, H. J.; Lee, C. Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713-3717.
    Kimberly, M.; James, R. B.; Morag, J. Y.; Rebecca, H. R.; Lea, M.D. Delvridge. Mycocardial autophagy activation and suppressed surivival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology, 2011, 50, 1035-1043.
    Kroes, B. H.; van den Berg, A. J.; Quarles van Ufford, H. C.; van Dijk, H.; Labadie, R. P. Anti-inflammatory activity of gallic acid. Planta Med. 1992, 58, 499-504.
    Lẻ, K. A.; Tappy, L. Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care. 2006, 9, 469-475.
    Le Roith, D.; Zick, Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes. 2001, 24, 588-597.
    Leahy, J.L.; Halvan, P.A.; Weir, G.D. Relative hyperserection of proinsulin in rat model of NIDDM. Diabetes, 1991, 40, 985-989.
    Lietzke, S. E.; Bose, S.; Cronin, T.; Klarlund, J.; Chawal, A.; Czech, M. P.; Lambright, D. G. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol cell. 2000, 6, 385-394.
    Liu, I. M.; Hsu, F. L.; Chen, C. F.; Cheng, J. T. Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic rats. Br. J. Pharmacol. 2000, 129, 631-636.
    Ma. J.; Luo, X. D.; Proriva, P.; Yang, H.; Ma, C.; Basile, M. J.; Weinstrin, I. B.; Kennelly, E. J. Bioactive novel polyphenols from of Manikara zapota (Sapodilla). J. Nat. Prod. 2003, 66, 983-986.
    Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727-747.
    Marchand-Brustel, Y. L.; Gual, P.; Grémeaux, T.; Gonzalez, T.; Barrès, R.; Tanti, J. F. Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signaling. Biochem Soc Trans. 2003, 31, 1152-1156.
    Maritim, A. C.; Sanders, R. A.; Watkins, J. B. Diabetes, oxidative stress, and antioxidants : a review. J. Biochem. Mol. Toxicol, 2003, 17, 24-38.
    Marklund S and Marklund G. Involvenment of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. 1974, 47, 469-474.
    Martino, V.; Morales, J.; Martinez-Irujo, J. J.; Font, M.; Mouge, A.; Coussio, J.; Two ellagitannins from the leaves of Terminalia triglora with ingibitory activity on HIV-1 reverse transcriptase. Phytother. Res. 2004, 18, 667-669.
    Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diavetologia, 1985, 28, 7, 412-419.
    McEvoy, G. K. AHFS drug information. American Society of Health-System Pharmacists. 2000, 28, 2862-2864.
    Michaël, J.; Julien, M.; Cédric, S. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Anal Bioanal Chem. 2011, 401, 1531-1539.
    Milani, E.; Nikfar, S.; Khorasani, R.; Zamani, M. J.; Abdollahi, M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. Toxicol. Pharmacol, 2005, 140, 251-255.
    Mittelman, S. D.; Fu, Y. Y.; Rebrin, K.; Bergman, R. N. Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia. Diabetes, Modified militaris (Linn.) Link Chem SOC. 2005, 2299-2300.
    Miyamoto, K. l.; Nomura, M.; Murayama, T.; Furukawa, T.; Hatano, T.; Yoshida, T.; Koshiura, R.; Okuda, T. Antitumor activities of ellagitannins against sarcoma-180 in mice. Biol. Pharm. Bull. 1993, 16, 379-387.
    Muckler, M. Facilitative glucose transporter. Eur. J. Biochem. 1994, 219, 713-725.
    Neergheen, V.; Soobrattee, M.; Bahorun, T. and Aruoma, O. Characterization of the phenolic constituents in Mautitian endemic plants as determinants of their antioxidant activities in vitro. Journal of plant physiology. 2006, 163,787-799.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature, 2000, 404, 787-790.
    Nonaka, G. I.; Nishioka, I.; Nishizawa, M.; Yamagishi, T.; Kashiwada, Y.; Durschman, G. E.; Bodner, A. J; Kilkuskie, R. E.; Cheng, Y. C.; Lee, K. H. Anti-AIDS agents 2. Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells. J. Nat. 1990, 53, 587-595.
    Nourooz-Zadeh, J.; Rahimi, A.; Tajaddini-Sarmadi, J.; Tritschler, H.; Rosen, P.; Halliwell, B.; Betteridge, D. J. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997, 40, 647-653.
    Ohnishi, M.; Matuo, T.; Tsuno, T.; Hosoda, A.; Normura, E.; Taniguchi, H.; Sasaki, H.; Morishita, H. Antioxidation activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors. 2004, 21, 315-319.
    Oin, B.; Nagasaki, M.; Ren, M.; Bajotto, G.; Oshida, Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract. 2003, 62, 139-148.
    Okada, T.; Kawano, Y.; Sakakibara, T.; Hazeki, O.; Ui, M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wormannin. J. Biol. Chem. 1994, 269, 3568-3573.
    Okuta, H.; Ozcelikb, N.; Yilmazb, H. R.; Uzb, E. Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin. Biochem. 2005, 38, 191-196.
    Olsom, A. L.; Pessin, J. E. Structure , function and regulation of the mammalian faculutatuve glucose transporter gene family. Annu. Rev. Nutr. 1996, 16, 235-256.
    Oranje, W. A.; Wolffenbuttel, B. H. Lipid peroxidation and atherosclerosis in type II diabetes. J. Lab. Clin. Med, 1999, 134, 19-32.
    Ozdemir, G.; Ozden, M.; Maral, H.; Kuskay, S.; Cetinalp, P.; Tarkun, I. Malondialdehyde, glutathione, glutathione peroxidase and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. Ann. Clin. Biochem, 2005, 42, 99-104.
    Packer, L. Protective role of vitamin E in biological systems. Am. J. Clin. Nutr, 1991, 53,1051s-1055s.
    Paglia DE and Valentine WN. Studies on the qualitative characterization of erythrocyte peroxidase. J. Lab. Clin. Med. 1967, 70, 159-169.
    Panneerselvam, R. S.; Gocindaswamy, S. Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. J. Nutr Biochem, 2002,13, 21-26.
    Panunti, B.; Jawa, A. A.; Fonseca, V. A. Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discovery Today: Disease Mechanisms. 2004, 1, 151-157.
    Pari, L.; Latha, M. Antidiabetic effect of Scoparia dulcis : effect on lipid peroxidation in streptozotocin diabetes. Gen. Physiol. Biophys, 2005, 24, 13-26.
    Pessin, J. E.; Bell, G. I. Mammalian facilitative glucose transporter family: Structure and molecular regulation. Annu. Rev. Physiol. 1992, 54, 911-930.
    Pessin Puech, J. L.; Mertz, C.; Michon, V.; Le Guerevé, C.; Doco, T.. Hervé Du Penhoat, C. Evolution of castalagin and vescalagin in ethanol solutions. Identification of new derivatives. Journal of Agricultural and Food Chemistry. 1999, 47, 2060-2066.
    Punithavathi, V. R.; Prince, S. M.; Kumar, M. R.; Selvakumari, C. J. Protective effect of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic wistar rats. J. Bio. Mol. Toxicology. 2010, 25, 68-76.
    Punithavathi, V. R.; Mainzen Prince, P. S. Antihyperglycemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic wistar rats. Journal of Pharmacology. 2010, 650, 465-471.
    Rangwala, S. M.; Lazar, M. A. Peroxisome proliferators-activated receptor in diabetes and metabolism. Trend Pharmacol. Sci. 2004, 25, 331-336.R
    R. Cecily Rosemary Latha, P. Daisy. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chemico-Biological Interactions, 2011, 189, 112-118.
    Reiter, R.J. Oxidative damage in the central nervous system : protection by melatonin. Progress in Neurobiology, 1998, 56, 359-384.
    Rider, M. H.; Bertrand, L.; Vertommen, D.; Michels, P. A.; Rousseau, G. G.; Hue, L. 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase: head-tohead with a bifunctional enzyme that controls glycolysis. Biochem. J., 2004, 381, 561-579.
    Robertson, R. P.; Olson, L. K.; Zhang, H. J. Differentiating glucose toxicity from glucose desensitization: a new massage from the insulin gene. Diabetes. 1994, 43, 1085-1089.
    Rosângela, M. N.; Mirian, U.; Maria, S. S.; Debora, Q. T.; Carla, R. O.; Mário, J. A. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr., 2000, 130, 1531-1535.
    Rosen, O. M. After insulin binds. Scince. 1987, 237, 1452-1457.
    Saad, M. F.; Knowler, W. C.; Pettitt, D. J.; Nelson, R. G.; Mott, D. M.; Bennett, P. H. The natural history of impaired glucose tolerance in the Pima Indians. N. Engl. J. Med. 1988, 319, 1500-1506.
    Saltiel, A. R.; Kahn, C. R. Insulin signaling and the regulation of glucose and lipid metabolism. Nuture, 2001, 414, 799-806.
    Sayegh H. A.; Jarrett R. J. Oral glucose-tolerance tests and the diagnosis of diabetes: results of a prospective study based on the Whitehall survey. Lancet. 1979, 8140, 431-433.
    Scalbert, A. R.; Johnson, I. T.; Saltmarsh, M. Polyphenols: antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S-217S.
    Scheepers, A.; Joost, H. G.; Schurmann, A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J. Parenteral and enteral nutrition. 2004, 28, 364-371.
    Scribner, K. A.; Gadbois, T. M.; Gowri, M.; Azhar, S.; Reacen, G. M. Masoprocol decreases serum triglyceride concentrations in rats with fructose-induced hypertriglyceridemia. Metabolism, 2000, 49, 1106-1110.
    Seghrouchni, I.; Drai, J.; Bannier, E.; Riviere, J.; Calmard, P.; Garcia, I.; Orgiazzi, J.; Revol, A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus, insulin treatment efficiency. Clin. Chim. Acta, 2003, 321, 89-96.
    Sekeroglu, M. R.; Sahin, H.; Dulger, H.; Algun, E. The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clin. Biochem, 2003, 33, 669-674.
    Shen, S. C.; Cheng, F. C. and Wu, N. J, Effect of guava ( Psidium guajava Linn. ) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother. Res. 2008, 22, 1458-1464.
    Shepherd, P. R. and Kahn, B. B. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. N. Engl. J. Med.1999, 341:248-257.
    Simic, M. Antioxidant compounds : an overview. In oxidative damage and repair. Chemical, biological, and medical aspects, 1991, Dacies, K. J. A. ed, Pergamon Press, New York, pp543-549.
    Singh, J.; Rai, G. K.; Upadhyay, A. K.; Kumar, R.; Singh, K. P. Antioxidant phytochemicals in tomato (Lycopersicon esculentum). Ind. Agric. Sci. 2004, 74, 3-5.
    Silva, D. D.; Zancan, P.; Coelho, W. S.; Gomez, L. S.; Sola-Penna, M.; Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissue from streptozotocin-induced diabetic mouse. Arch. Biochem. Biophys., 2010, 496, 53-60.
    Slatter, D.A.; Paul, R.G.; Murray, M.; Bailey, A.J. Reactions of lipid-derived malondiadehyde with collagen. J. Biol. Chem, 1999, 274, 19661-19669.
    Sozmen, B.; Delen, Y.; Girgin, F. K.; Sozmen, E. Y. Catalase and peroxonase in hypertensive type 2 diabetes mellitus : correlation with glycemic control. Clin. Biochem, 1999, 32, 423-427.
    Steiner, D.; Bell, G.; Tagar, H. “ Chemistry and biosynthesis of pancreatic protein hormones,” . Endocrinology, 1995, 1296-1328.
    Tatum VL Changchit C and Chow CK. M easurement of malondialdehyde by highperformance lipid chromatography with fluorescence detection. Lipid. 1990, 25(4),226-229.
    Tezng, F. T.; Shorong, S. L.; I-Min, L. Myricetin ameliorates defective post-receptor insulin signaling via -endorphin signaling in the skeletal muscles of fructose-fed rats. Evidence-based complementary and alternative medicine, 2011, 1-9.
    Thorens, B.; Cheng, Z. Q.; Broen, D.; Lodish, H. F. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am. J. Physiol. 1990, 259, C279-C285.
    Tobey, T. A.; Mondon, C. E.; Zavaroni, I.; Reaven, G. M. Mechanism of insulin resistance in fructose-fed rats. Metabolism, 1982, 31, 608-612.
    Togashi, N.; Ura, N.; Higashiura, K. The contribution of skeletal muscle tumor necrosis factor-alpha to insulin resistance and hypertension in fructose-fed rats. J. Hypertens. 2000, 18, 1605-1610.
    Venditti, P.; Meo, S. D. Antioxidant, tissue damage, and endurance in trained and untrained young male rats. Arch. Biochem. Biophys, 1996, 331, 63-68.
    Vera, F.; Khalid, M. E.; Yanfang, C.; Mary, P.K.; Tatiana, S. C.; Maria, C. I.; Mariana, M. Nocturnal hypertension in mice consuming a high fructose diet. Autonomic Neuroscience: Basic and Clinical, 2006, 130, 41-50.
    Vilhelmoca, N.; Jacquet, R.; Quideau, S.; Stoyanova, A.; Galabov, A. S. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus type 1 and 2. J. Antivital Research. 2011, 89, 174-181.
    Von Sonntag, C. The chemical basis of radiation biology. Talyor and Francis, London, 1987.
    Wannaporn, S.; Aramsri, M.; Sirintorn, Y. A.; Sirichai, A. Preventive effect of grape seed extract against high-frucots diet-induced insulin resistance and oxidative stress in rats. Food and Chemical Toxicology, 2010, 48, 1853-1857.
    Ward, W. K.; LaCava, E. C.; Paqutte, T. L.; Beard, J. C.; Wallum, B. J.; Porte, D.J. Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia.1987, 30, 698-702.
    West, I. C. Radicals and oxidative stress in diabetes. Diabet. Med. 2000, 17, 171-180.
    White, M. F.; Kahn, C. R. The insulin signaling system. J. Biol. Chem. , 1994, 269, 1-4.
    Yamakoshi, Y.; Nagano, T.; Hu, J. C.; Yamakoshi, F.; Simmer, J. P. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments. B. M. C. Biochem. , 2011, 3, 1-13.
    Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/ binding proteins. J. Biol. Chem, 1994, 269, 9889-9897.
    Yang, L. L.; Wang, C. C.; Yen, K. Y.; Yoshida, T.; Hatano, T.; Okuda, T. Antitumor activities of ellagitannins on tumor cell lines. Chemistry, Biology, Pharmacology and Ecology. 1999, 615-628.
    Yoshinaga, T. A. Morphological study on the mechanism of insulin-resistance, using sulfonylurea, 1-leucine, and alpha-ketocarboxylic acids. Nippon Naibunpi Gakkai Zasshi-Folia Endocrinol. Jap. 1968, 44, 741-749.
    Zahraa, F. E.; Ashry, Z. E.; Mahmound, M. F.; Maraghy, N. E.; Ahmed, A. F. Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food and Chemcal Toxicology, 2012, 50, 1159-1165.
    Zavaroni, I.; Chen, Y. I.; Reaven, G. M. Studies of mechanism of insulin-induced hypertriglyceridemia in the rat. Metabolism, 1982, 31, 1077-1083.
    Zavaroni, I.; Sander, S.; Scott, S.; Reaven, G. M. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism. 1980, 29, 970-973.

    下載圖示
    QR CODE