研究生: |
劉祐丞 Liu, You-Cheng |
---|---|
論文名稱: |
具可調控空腔尺寸和表面電漿激發波長的搖鈴形金屬電漿子材料的合成 Synthesis of Plasmonic Nanorattles with Tunable Cavity Sizes and Surface Plasmon Excitation |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 搖鈴形金屬奈米電漿子材料 、金屬置換反應 、表面電漿共振 、金奈米棒 、金/銀-核/殼奈米長方體 |
英文關鍵詞: | Nanorattles, plasmonic nanostructures |
DOI URL: | http://doi.org/10.6345/NTNU201900345 |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
搖鈴形奈米材料是金屬核-殼顆粒,其核和殼之間由導電的金銀合金相連。由於它們在空腔內具有非常高的電場增強,因此這些奈米粒子被認為是一類有前途的奈米粒子。以往的困境為實驗再現性和當中心金屬芯移動時造成軸對稱性的損失,進而導致奈米空腔尺寸和電場增強位置無法定義。我們的合成方法使中心金奈米棒牢固地固定在長方體框架中,形成軸對稱的奈米結構。我們經由穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、場發射掃描穿透式球差修正電子顯微鏡的元素分析(STEM & EDS)和多功能原子力顯微鏡(AFM)定義搖鈴形奈米材料的結構。本文研究了具有不完全的金屬置換反應的穩定中間產物的消光光譜演化。透過添加不同量的Au3+離子,製備一系列從金/銀-核/殼奈米長方體到金奈米棒-金銀合金框架的搖鈴形奈米結構。可以觀察到樣品的懸浮液有明顯的顏色變化。縱向表面電漿共振波長涵蓋的位置從660到1000 nm。我們透過電磁模擬研究了光譜的變化,發現尺寸增大和空腔的形成對於光譜變化有著重要作用。
Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These nanorattles are considered to be a promising class of nanoparticles because of their high electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axis symmetry when the center metal core moves, which leads to the inability to define the nanocavity dimensions and the electric field enhancement position. Our synthetic method allows the central gold nanorod to be firmly fixed in the cuboid frame to form an axisymmetric nanostructure. We define the structure of nanorattles by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning TEM & energy-dispersive X-ray spectroscopy (STEM & EDS) and atomic force microscopy (AFM). In this work, we investigate the spectral evolution of the stable intermediate products with incomplete Galvanic replacement reactions. By adding the various amount of Au3+ ion, a series of nanostructures from Au@Ag nanocuboids to Au-Ag nanorattles are prepared. The suspensions of the products show a clear color change. The longitudinal plasmon mode of the nanostructures cover from 660 to 1000 nm is prepared. We investigate the spectral shift with electromagnetic simulations and find that both size enlargement and cavity formations play an important role in the spectral shift.
參考文獻
1. 牟中原、陳家俊, 奈米材料研究發展. 科學發展 2000, 28 (4), 281-288.
2. Hulla, J.; Sahu, S.; Hayes, A., Nanotechnology:History and future. Human & Experimental Toxicology 2015, 34 (12), 1318-1321.
3. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials 2001, 13 (18), 1389-1393.
4. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067.
5. Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962.
6. Sau, T. K.; Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society 2004, 126 (28), 8648-8649.
7. Chen, Y.; Gu, X.; Nie, C.-G.; Jiang, Z.-Y.; Xie, Z.-X.; Lin, C.-J., Shape controlled growth of gold nanoparticles by a solution synthesis. Chemical Communications 2005, (33), 4181-4183.
8. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249 (17), 1870-1901.
9. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters 2013, 13 (2), 765-771.
10. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M., Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering. ACS Nano 2014, 8 (6), 5833-5842.
11. Lee, J.-H.; Gibson, K. J.; Chen, G.; Weizmann, Y., Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nature Communications 2015, 6, 7571.
12. Lance Kelly, K.; Coronado, E.; Lin Zhao, L.; C. Schatz, G., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. 2002; Vol. 34.
13. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin 2005, 30 (5), 368-375.
14. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science 2007, 23 (3), 217.
15. Geddes, C. D.; Lakowicz, J. R., Editorial: Metal-Enhanced Fluorescence. Journal of Fluorescence 2002, 12 (2), 121-129.
16. Lakowicz, J. R., Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry 2005, 337 (2), 171-194.
17. Timko, B. P.; Dvir, T.; Kohane, D. S., Remotely Triggerable Drug Delivery Systems. Advanced Materials 2010, 22 (44), 4925-4943.
18. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle /metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 2014, 8, 95.
19. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Rep Prog Phys 2013, 76 (4), 046401.
20. Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J., Surface Chemistry of Gold Nanorods. Langmuir 2016, 32 (39), 9905-9921.
21. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society 2012, 134 (40), 16662-16670.
22. Willets, K. A.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
23. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 2014, 195, 332-351.
24. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials 2009, 21 (48), 4880-4910.
25. Vigderman, L.; Zubarev, E. R., High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent. Chemistry of Materials 2013, 25 (8), 1450-1457.
26. Huang, X.; El-Sayed, M. A., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010, 1 (1), 13-28.
27. Wang, X.; Shao, M.; Zhang, S.; Liu, X., Biomedical applications of gold nanorod-based multifunctional nano-carriers. Journal of Nanoparticle Research 2013, 15 (9), 1892.
28. Atta, S.; Tsoulos, T. V.; Fabris, L., Shaping Gold Nanostar Electric Fields for Surface-Enhanced Raman Spectroscopy Enhancement via Silica Coating and Selective Etching. The Journal of Physical Chemistry C 2016, 120 (37), 20749-20758.
29. Liu, H.; Zhang, X.; Zhai, T.; Sander, T.; Chen, L.; Klar, P. J., Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale 2014, 6 (10), 5099-105.
30. Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M., Shape control in gold nanoparticle synthesis. Chemical Society Reviews 2008, 37 (9), 1783-1791.
31. Petrova, H.; Perez-Juste, J.; Zhang, Z.; Zhang, J.; Kosel, T.; Hartland, G. V., Crystal structure dependence of the elastic constants of gold nanorods. Journal of Materials Chemistry 2006, 16 (40), 3957-3963.
32. Reischl, B.; Kuronen, A.; Nordlund, K., Nanoindentation of gold nanorods with an atomic force microscope. Materials Research Express 2014, 1 (4).
33. Personick, M. L.; Mirkin, C. A., Making Sense of the Mayhem behind Shape Control in the Synthesis of Gold Nanoparticles. Journal of the American Chemical Society 2013, 135 (49), 18238-18247.
34. Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A., Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano Letters 2011, 11 (8), 3394-3398.
35. Wang, Q.; Wang, Z.; Li, Z.; Xiao, J.; Shan, H.; Fang, Z.; Qi, L., Controlled growth and shape-directed self-assembly of gold nanoarrows. Science Advances 2017, 3 (10), e1701183.
36. Liu, M.; Guyot-Sionnest, P., Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids. The Journal of Physical Chemistry B 2005, 109 (47), 22192-22200.
37. Xia, Y.; Xia, X.; Peng, H.-C., Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. Journal of the American Chemical Society 2015, 137 (25), 7947-7966.
38. Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M., Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)−CTAB Complexes. The Journal of Physical Chemistry B 2005, 109 (30), 14257-14261.
39. Đurović, M. D.; Puchta, R.; Bugarčić, Ž. D.; van Eldik, R., Studies on the reactions of [AuCl4]− with different nucleophiles in aqueous solution. Dalton Transactions 2014, 43 (23), 8620-8632.
40. Schwerdtfeger, P., Relativistic effects in gold chemistry. 2. The stability of complex halides of gold(III). Journal of the American Chemical Society 1989, 111 (18), 7261-7262.
41. Wang, F.; Cheng, S.; Bao, Z.; Wang, J., Anisotropic Overgrowth of Metal Heterostructures Induced by a Site-Selective Silica Coating. Angewandte Chemie International Edition 2013, 52 (39), 10344-10348.
42. Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; García de Abajo, F. J.; Fery, A.; Liz-Marzán, L. M., Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters 2015, 15 (8), 5427-5437.
43. Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J., Unraveling the Evolution and Nature of the Plasmons in (Au Core)–(Ag Shell) Nanorods. Advanced Materials 2012, 24 (35), OP200-OP207.
44. Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L. M., Au@Ag Nanoparticles: Halides Stabilize {100} Facets. The Journal of Physical Chemistry Letters 2013, 4 (13), 2209-2216.
45. Schnepf, M. J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T. A. F.; Fery, A., Nanorattles with tailored electric field enhancement. Nanoscale 2017, 9 (27), 9376-9385.
46. Park, J.-E.; Kim, S.; Son, J.; Lee, Y.; Nam, J.-M., Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles. Nano Letters 2016, 16 (12), 7962-7967.
47. Ngo, H. T.; Freedman, E.; Odion, R. A.; Strobbia, P.; De Silva Indrasekara, A. S.; Vohra, P.; Taylor, S. M.; Vo-Dinh, T., Direct Detection of Unamplified Pathogen RNA in Blood Lysate using an Integrated Lab-in-a-Stick Device and Ultrabright SERS Nanorattles. Scientific Reports 2018, 8 (1), 4075.
48. Lin, S.; Lin, X.; Zhao, H.; Hasi, W.; Wang, L., Quantitative SERS measurements by self-assembled ultra-smooth Au nanosphere superlattice with embedded internal reference. 2018; Vol. 124.
49. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S., Size-Dependent Surface Enhanced Raman Scattering Activity of Plasmonic Nanorattles. Chemistry of Materials 2015, 27 (15), 5261-5270.
50. Ahn, J.; Wang, D.; Ding, Y.; Zhang, J.; Qin, D., Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au–Ag Alloy Frames. ACS Nano 2018, 12 (1), 298-307.
51. Liu, K.-K.; Tadepalli, S.; Kumari, G.; Banerjee, P.; Tian, L.; Jain, P. K.; Singamaneni, S., Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. The Journal of Physical Chemistry C 2016, 120 (30), 16899-16906.
52. Camposeo, A.; Persano, L.; Manco, R.; Wang, Y.; Del Carro, P.; Zhang, C.; Li, Z.-Y.; Pisignano, D.; Xia, Y., Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS Nano 2015, 9 (10), 10047-10054.
53. Zhang, X.; Xi, Z.; Machuki, J. O. a.; Luo, J.; Yang, D.; Li, J.; Cai, W.; Yang, Y.; Zhang, L.; Tian, J.; Guo, K.; Yu, Y.; Gao, F., Gold Cube-in-Cube Based Oxygen Nanogenerator: A Theranostic Nanoplatform for Modulating Tumor Micro- environment for Precise Chemo-Phototherapy and Multimodal Imaging. ACS Nano 2019, 13 (5), 5306-5325.
54. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X.; Cheng, W., Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6 (23), 14388-14393.
55. da Silva, A. G. M.; Rodrigues, T. S.; Correia, V. G.; Alves, T. V.; Alves, R. S.; Ando, R. A.; Ornellas, F. R.; Wang, J.; Andrade, L. H.; Camargo, P. H. C., Plasmonic Nanorattles as Next-Generation Catalysts for Surface Plasmon Resonance-Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie International Edition 2016, 55 (25), 7111-7115.
56. Singh, P.; Roy, S.; Jaiswal, A., Cubic Gold Nanorattles with a Solid Octahedral Core and Porous Shell as Efficient Catalyst: Immobilization and Kinetic Analysis. The Journal of Physical Chemistry C 2017, 121 (41), 22914-22925.
57. Almora-Barrios, N.; Novell-Leruth, G.; Whiting, P.; Liz-Marzán, L. M.; López, N., Theoretical Description of the Role of Halides, Silver, and Surfactants on the Structure of Gold Nanorods. Nano Letters 2014, 14 (2), 871-875.
58. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M., A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters 2015, 6 (21), 4270-4279.
59. Park, K.; Koerner, H.; Vaia, R. A., Depletion-Induced Shape and Size Selection of Gold Nanoparticles. Nano Letters 2010, 10 (4), 1433-1439.
60. Grillet, N.; Manchon, D.; Bertorelle, F.; Bonnet, C.; Broyer, M.; Cottancin, E.; Lermé, J.; Hillenkamp, M.; Pellarin, M., Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding. ACS Nano 2011, 5 (12), 9450-9462.
61. Hagemann, H. J.; Gudat, W.; Kunz, C., Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65 (6), 742-744.
62. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Physical Review B 1972, 6 (12), 4370-4379.
63. Hsu, L.-Y.; Ding, W.; Schatz, G. C., Plasmon-Coupled Resonance Energy Transfer. The Journal of Physical Chemistry Letters 2017, 8 (10), 2357-2367.
64. Kuo, T.-R.; Hovhannisyan, V. A.; Chao, Y.-C.; Chao, S.-L.; Chiang, S.-J.; Lin, S.-J.; Dong, C.-Y.; Chen, C.-C., Multiple Release Kinetics of Targeted Drug from Gold Nanorod Embedded Polyelectrolyte Conjugates Induced by Near-Infrared Laser Irradiation. Journal of the American Chemical Society 2010, 132 (40), 14163-14171.
65. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9 (7), 671-675.