簡易檢索 / 詳目顯示

研究生: 樊雪春
Hsueh-Chen Fan
論文名稱: 學生科學迷思概念的法則分析與建構教學取向教學法之實驗效果研究
Analysis and Experimental Study on Science Misconception and Constructive Instruction
指導教授: 郭生玉
Kuo, Sheng-Yu
學位類別: 博士
Doctor
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
畢業學年度: 87
語文別: 中文
論文頁數: 225
中文關鍵詞: 迷思概念科學概念法則評鑑功能測量理論建構教學概念學習小學彈簧槓桿
英文關鍵詞: misconception, science concept, rule assessment, functional measurement theory, constructivism, concept learning, elementary school, spring and lever
論文種類: 學術論文
相關次數: 點閱:341下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從認知心理學訊息處理理論的觀點,建構取向教學理論為要點,對學生迷思概念進行探討。本研究主要有三個研究目的:(一)探討不同自然科學能力學生分別在不同科學概念上所使用的法則差異;(二)分析學生在不同編碼科學概念間使用法則的差異;(三)探討建構取向教學法對促進學生科學概念學習效果的影響。
    本研究為達成前述目的,共進行研究一及研究二兩個研究部份。研究中以自然科學的槓桿概念、彈簧概念、排水體積概念、及水流速度概念為研究內容,這四類概念依訊息處理理論而言,分屬四類不同編碼之科學概念。依據Siegler之法則評鑑法評估學生在科學概念上四種法則的使用,將法則一、法則二、法則三視為迷思概念法則,法則四視為正確概念法則。並且以系列學業技能測驗水準一的自然科分測驗的得分,作為區分不同自然科學能力學生的依據。
    在研究一的部份,主要分析不同科學能力學生分別在四種科學概念上的法則表現,以及探討不同編碼科學概念間的差異。研究是以327位東門國小六年級學生為受試,將其區分為低、中、高三種自然科學能力學生,讓學生進行彈簧概念、槓桿概念、水流速度概念、及排水體積概念,四類概念的科學量表施測。
    綜和研究一的結果如下:
    1.不同科學能力學生在彈簧和排水體積兩種科學概念法則的使用上沒有差異存在,但在槓桿和水流速度兩種科學概念法則的使用上有差異存在。
    2.除了彈簧概念和水流速度概念以外,學生在不同編碼科學概念的彈簧概念、槓桿概念、水流速度概念、及排水體積概念,兩兩之間皆有差異存在。
    研究二的部份,主要探討建構取向教學法對促進學生科學概念的學習效果。為了達到研究目的,設計了五週,每週八十分鐘的建構教學課程。以東門國小六年級兩個班級五十八位學生為受試者,其中三十位同學為實驗組,二十八位學生為控制組。實驗組接受建構取向教學法實驗,而控制組接受傳統教學法處理,在五週實驗課程結束後一週內進行後測,實施四種科學量表的後測,並以二因子共變數分析,考驗建構取向教學法對學生在科學概念學習效果的影響,並以百分比同質性考驗,檢定建構取向教學法對學生正確法則概念的促進效果。研究結果發現如下:
    1.接受建構取向教學法的學生,在四種科學概念的整體表現上優於傳統教學法的控制組學生。
    2.接受建構取向教學法對學生在槓桿概念、彈簧概念、水流速度概念的分項分數的促進效果,沒有顯著差異存在。但建構取向教學法對於排水體積概念表現的促進效果,有顯著差異存在。接受建構取向教學法後,學生在排水體積概念的表現優於傳統教學法的學生。
    3.建構取向教學法對不同自然科學能力學生在科學概念的總分及四種科學概念的分數促進效果,並無顯著交互作用存在。
    4.建構取向教學法對於學生的槓桿概念及彈簧概念的促進效果未獲支持。然而,建構教學取向教學法對於學生的排水體積概念和水流速度概念的促進效果顯著優於傳統教學法。亦即接受建構取向教學法後,實驗組學生在排水體積概念和水流速度概念的正確概念法則的使用人數,明顯多於控制組學生。
    綜合研究一與研究二的結果,本研究結果可提供教育心理學及科學教育,和實際教學的參考。

    The primary purposes are to explore the rules used by students with different science ability, the different rules used by students with different rule encoding of science concepts, and the effect of constructive instruction on science concept learning.
    In study one, the rules of four kinds of science concepts used by students with different science ability were analyzed. According to functional measurement theory, the science concepts on lever, spring, volume of water displacement, and velocity of water flow were analyzed. There were 327 sixth grader of Tong-Meng Elementary School.
    The results of study one show that:
    1. There was no significant differences between the science concept rules of spring and volume of water displacement used by students with different ability. There were significant differences between the science concept rules of lever and velocity of water flow used by students with different ability.
    2. There were significant differences among different science rule encoding concepts including spring, lever, volume of water displacement, and velocity of water flow.
    In study two, two classes of the sixth grade students of Tong-Meng Elementary School were used as subjects; one class was the control group and the other was the experimental group. The control group received conventional instruction; the experimental group received Constructive Instruction. Each was instructed for five weeks. Each class period lasted 80 minutes.
    The results of study two show that:
    1. As for changing students* misconception, using the Constructive Instruction was not better than conventional instruction in the science concept of spring and lever.
    2. As for changing students* misconception, using the Constructive Instruction was better than conventional instruction in the science concept of volume of water displacement and velocity of water flow.
    In general, effects of the constructive approach on students* learning science concept were shown. Discussions of important issues, implications of the study, and suggestions for follow-up studies are included.

    第一章 緒論 第一節 研究動機與目的*********** 1 第二節 研究問題**************. 8 第三節 名詞釋義**************. 9 第二章 文獻探討***************** 17 第一節 科學迷思概念的相關研究*******. 17 第二節 建構教學的學習模式*********.. 36 第三章 研究一 科學迷思概念的法則分析*****. 53 第一節 研究方法*************** 54 第二節 研究結果*************** 71 第三節 討論*****************..94 第四章 研究二 建構取向教學法之實驗效果研究 *..103 第一節 研究方法***************104 第二節 研究結果***************116 第三節 討論***************** 138 第五章 結論與建議***************. 149 第一節 結論***************** 149 第二節 建議***************** 154 參考文獻*********************. 161 附錄一 彈簧概念作業問題***********177 附錄二 排水體積作業問題***********183 附錄三 水流速度作業問題***********188 附錄四 四種科學概念作業量表*********193 附錄五 建構取向教學法實驗教學*******.. 202

    一、中文部份
    江文慈 (民82) 槓桿認知能力發展的評量與學習遷移歷程
    的分析-動態評量之應用 師範大學教育心理與輔導研
    究所碩士論文。
    江淑卿 (民85) 知識結構的重要特性之分析暨促進知識結 構教學策略之實驗研究。 師範大學教育心理與輔導研
    究所博士論文。
    王建造 (民80) 學生認知發展、思考規則與逆思解題之研
    究。高雄市﹕復文書局。
    吳玉明(民86) 建構教學策略中不同學習型態學生學習的探討 國立新竹師範學院國民教育研究所碩士論文。
    杜佳真(民84) 交互學習的建構教學課程對國小五年級不同批判思考能力學生速率問題解題歷程暨學習內發動機的影響 師範大學教育心理與輔導研究所碩士論文。
    李暉(民82) 國中理化教師試行建構教學之個案研究。國立彰化師範大學科學教育研究所碩士論文。
    林宏一 (民79) 大一與高三學生化學平衡的解題過程與行
    為之分析。彰化師大科學教育研究所碩士論文。
    林清山譯 (民79) 教育心理學一認知取向。台北﹕遠流。
    洪木利 (民78) 我國兒童對牛頓定律概念架構之認知過
    程。國科會認知與學習基礎研究第三次研討會。
    陳忠志 (民75) 大一學生物理學錯誤概念之研究﹕(一)力學錯誤概念。國科會專題研究報告。台北市﹕國科會科教處。
    陳忠志 (民77) 大一學生物理學錯誤概念之研究﹕(二)光學錯誤概念。國科會專題研究報告。台北市﹕國科會科教處。
    陳淑絹 (民80) 創造性問題解決訓練課程對高中學生創造
    力、科學能力及科學態度之影響。國立師範大學教育心
    理暨輔導研究所碩士論文。
    陳慧娟(民83) 策略訓練課程與策略監控訓練課程對增進
    國小六年級學生斜坡問題認知能力之比較研究遷移歷
    程之分析 師範大學教育心理與輔導研究所碩士論文
    鄭昭明 (民78) 認知與語言的基礎研究一教學心理的歷程
    分析。科學發展月刊,17(1),21-38。
    郭重吉 (民77) 從認知的觀點探討自然科學的學習。彰師教育學院學報,13期,351-371。
    郭重吉 (民79) 學生科學知識認知結構的評估與描述。彰化
    師範大學學報,1期,279-319。
    郭重吉 (民81) 從建構主義的觀點探討中小學數理教學的改進。科學發展教育,20(1)期,至548-570。
    郭重吉、吳武雄 (民78) 利用晤談方式探查國中學生對重要
    物理概念的另有架構之研究。國科會專題研究報告。台
    北市﹕國科會科教處。
    郭重吉、許玫理 (民81) 從科學哲學觀點的演變探討科學教育的過去與未來。 彰化師大學報,3,531-561。
    許嘉玲 (民86) 浮力學習之概念改變。國立師範大學科學教育研究所碩士論文。
    許健將 (民80) 利用二段式測驗探索高三學生有關共價鍵
    及分子結構之迷思概念。彰化師大科學教育研究所碩士
    論文。
    陸維作 (民77) 氧化還原概念發展與推理相關之研究。國科
    會專題研究報告。台北市﹕國科會科教處。
    黃曼麗 (民72) 皮亞傑認知發展及大腦半球職司與大一學
    生理科學業相關性的研究。國立台灣教育學院學報,第
    八期,741-778。
    黃湘武 (民77) 我國學生科學概念與推理能力發展之相關
    研究﹕光的性質 (一) 。國科會專題研究報告。台北市:國科會科教處。
    黃湘武 (民78) 我國學生科學概念與推理能力發展之相關
    研究﹕光的性質 (二) 。國科會專題研究報告。台北市﹕國科會科教處。
    黃湘武、黃寶鈿 (民75a)我國學生科學概念與推理能力發展
    之相關研究﹕形式操作推理能力與INRC認知結構
    (一) 。國科會專題研究報告。台北市﹕國科會科教處。
    黃湘武、黃寶鈿 (民75b)我國學生科學概念與推理能力發展
    之相關研究﹕莫耳概念。國科會專題研究報告。台北市﹕
    國科會科教處。
    黃湘武、黃寶鈿 (民76) 熱與溫度概念的診斷研究。國科會
    專題研究報告。台北市﹕國科會科教處。
    黃寶鈿 (民76) 我國學生科學概念與推理能力發展之相關
    研究﹕燃燒的化學及物理概念。國科會專題研究報告。
    台北市﹕國科會科教處。
    黃寶鈿 (民78) 溶液相關概念之認之發展層次的研究。國科
    會專題研究報告。台北市﹕國科會科教處。
    葉倩亨(民87) 建構取向教學在國中一年級數學課之實驗研究。國立政治大學教育研究所碩士論文。
    張美玉(民85) 建構主義教學模式和歷程檔案評量在自然科學教學之研究(二) 國科會研究報告。台北市﹕國科會科教處。
    鄭昭明 (民78) 認知與語言的基礎研究一教學心理的歷程
    分析。科學發展月刊,17(1),21-38。
    楊其安 (民78) 利用臨床晤談探究國中學生對力學概念的
    另有架構。彰化師大科學教育研究所碩士論文。
    熊召弟,王美芬,段曉林,熊同鑫譯(民85) 科學學習心理學S.M. Glynn & R.H.Yeany原著 台北心理出版社。
    樊雪春(民81) 國中國小學生解彈簧問題與排水體積問題
    之法則分析-法則評鑑取向 師範大學教育心理與輔導
    研究所碩士論文。
    樊雪春、陳慧娟(民85) 自然科學的教與學。 有效的學習方法編輯。教育部訓委會。
    鄭碧雲 (民79) 國中資賦優異學生科學過程技能與其相關
    因素之研究。國科會專題研究報告。台北市﹕國科會科
    教處。
    鐘靜(民86) 數學教室的新貌 國民小學數學科新課程概
    說(中年級) 台灣省國民學校教師研習會。
    謝秀月 (民79) 小學師院學生熱與溫度概念的另有架構。彰
    化師大科學教育研究所碩士論文。
    二、英文部份
    Anderson, N.H. (1980). Information integration theory
    developmental psychology. In F. Wilkening, J. Becker, &
    T. Trabas (Eds.), Information integration by children.
    Hillsdale, N.J. Erlbaum
    .
    Anderson, N.H. (1981). Foundations of information
    integration theory. New York: Academic Press.
    Anderson, N.H. (1982). Mathods of information integration
    theory.New York: Academic Press.
    Benson, D.L. (1991). High school students* ideas about the nature of matter and their comprehension of the mole concept in chemistry. PhD Dissertation University of California, L.A. pp.103.
    Butzow J.W.,& Gabel,D.(1986). We should all be researchers. Science Teacher,53(1),34-37.
    Champagne, A.B., Gunstone, R.F. & Klopfer, L.E. (1983). Effecting changes in cognitive structures amongst physics students. A paper presented at the annual meeting of the American Educational Research Association, Montreal, Quebec, Canada.
    Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980).
    Factors influencing learning of classical mechanics.
    American Journal of Physics. In press.
    Clement, J. (1979). Mapping a student*s causal conceptions
    from a problem-solving protocol. In J. Lochhead, & J.
    Clement (Eds.), Cognitive process instruction.
    Philadelphia: Franklin Inst, Press.
    Cobb, P. (1988). The tension between theories of learning and instruction in mathematics education. Educational Psychologist, 23, 87-103.
    Cobb,P.(1994). Constructivism in mathematics and science
    education. Educational Researcher,23(7),4.
    Cuneo, D.O. (1982). Children's judgements of numerical
    quantity:new view of early quantification. Cognitive
    psychology, 14,13-44.
    Driver,R.,Asoko,H.,Leach,J.,Mortimer,E.,& Scott,P.(1994).
    Constructing scientific knowledge in the classroom.
    Educational Researcher,23(7),5-12.
    Driver,R., & Bell, B. (1986). Students* thinking and the
    learning of science: A constructivist view. School
    Science and Mathematics, 86(3),443-456.
    Driver, R. and Oldham, V, (1986). A Constructivist Approach
    to Curriculum Development in Science, Studies in
    Science Education, 13, 105-122.
    Flavell,J.H (1985).Cognitive development .2nd ed. Englewood Chiffs,N.J.: Prentice-Hall.
    Gagne*E.D.(1985). The connitive psychology of school learning. Boston:Little,Brown,&Company.
    Geddis,N.(1996) .Science teaching and reflection:Incorporating new subject-matter into teachers*classroom frames.Science,Teaching and Action,18(2),pp.249-265.
    Glynn,S.M.,Yeany,R.H.,& Britton,B.K.(1991). The
    psychology of learning science. Hillsdale, New
    Jersy:Larwnce Erlbaum Associates, Publishers.
    Goldsmith,T.E.,Johnson,P.J.,& Acton,W.H. (1991). Assessing structural knowledge. Journal of Educational psychology .83,88-96.
    Gunstone, R. F., & White, R. T. (1981). Understanding of
    gravity. Science Education, 65, 291-299.
    Lawson.A.E.,Abraham,M.R. & Renner,J.W.(1989).Atheory of instruction:using the learning cycle to teach science concepts and thinking skills. NARST Monograph,Number One.
    Linn, M.C. (1977). Scientific reasoning: influences on task
    performance and response categorization. Science
    Education, 61,357-363.
    Maloney, D.P. (1984). Rule-governed approaches to physics--
    Newton's third law. Physics Education, 19,37-42.
    Maloney, D.P. (1985a). Rule-governed approaches to physics:
    conservation of mechanical energy. Journal of Research
    in Science Teaching,22(3),261-278.
    Maloney, D.P. (1985b). Rule-governed physics: some novice
    predictions.European Journal of Science Education,
    7(3),295-306.
    Maloney, D.P. (1988). Novice rules for projectile motion.
    Science Education, 72(4),501-513.
    Mcdermott(1990). A view from Physics Gardner, Greeno,
    Reif, Schoenteld, Disessa, Stage(ed) Toward a scientific
    practice of science education. Hillsdalt,N.J.
    Narode,R.B.(1987). Constructivism in mathematics and
    science education.(ERIC Document Reproduction
    Service No.ED 290 616)
    Nussbaum,J.(1989). Classroom conceptual change :
    Philosophical perspectives. International Journal of
    Science Education,11,530-540.
    Nussbaum,J.& Novick,S.(1980). Brainstorming in the classroom to invent a model:A case study .Jerusalem: Israel Science Teaching Center, The Hebrew University.
    Osborne, R. J. & Freybery,P.(Eds.)(1985) Learning in Science:
    The Implications of Children*s Science, Auckland, NZ:Heinemann.
    Osborne, R. J. & Wittrock, M. C. (1983). Learning Science: A Generative Process. Science Education, 67(4). 489-508.
    Osborne, R. & Wittrock, M. (1985). The Generative Learning
    Model and Its Implications for Science Education.
    Studies in Science Education, 12, 59-87.
    Paina, F.,& Sidney, S.(1985). The development of the concept
    of temperature when assessed via three developmental models.Unpublished doctoral dissertation, Tel-Aviv University, Israel.
    Paris, S. G., & Byrnes, J. P. (1989). The constructivist
    approach to self-regulation and learning in the classroom.
    In B. J. Zimmerman & D. H. Schunk (Eds.), Self -
    regulated learning and academic achievement: Theory,
    research, and practice (pp. 169-200). New York:
    Springer-Verlag.
    Pines, A. L.& West, L. H. T. (1986). Conceptual
    Understanding and Science Learning: An Interpretation of Research Within a Source-of-knowledge Framework,
    Science Education, 70(5), 583-604.
    Renner,J,Abraham,M.,Grzybowski.,& Marek, E.(1990). Understandings and misunderstandings of eighth graders*of four physics concepts found in textbooks. Journal of Research in Science Teaching ,27,35-54.
    Roth,K.,Anderson,C.W.,& Smith,E.L.(1987).Curriculum materials, teacher talk,and student learning:Case study in fifth-grade science teaching .Journal of Curriculum Study,19,pp.527-548.
    Roth, W.,& Roychoudhury,A.(1994).Physics students* epistemologies and view about knowing and learning .Journal of Research in Science Teaching ,31(1),5-30.
    Saunders,W.L.(1992). The constructivist perspective:
    Implications and teaching strategies for science. School
    Science and Mathematics,92(3),136-141.
    Schoenfeld, A.H.(Ed.).(1987). Cognitive science and
    mathematics education. Hillsdale, NJ:Erlbaum.
    Scott,P.,Dyson,T.,& Gater,S.(1989). A constructivist view of
    learning and teaching in science. (ERIC Document
    Reproduction Service No.ED 287 706)
    Shuell, T.J. (1987). Cognitive psychology and coceptual change: implications for teaching science. Science Education, 71(2), 239-250.
    Sierler, R.S. (1976). Three aspects of cognitive development.
    Cognitive Psychology, 8, 481-520.
    Siegler, R.S. (1978). The origin of scientific thinking. In
    Siegler, R.S. (ed.). Cognitive psychology and
    instruction. New York: Plenum Press.
    Siegler, R.S. (1981). Developmental sequences within and
    between concepts. Monographs of the Society for
    Research in Child Development, 46, 2, (Whole No. 189).
    Siegler, R.S. (1983). Five generalizations about cognitive
    development. American Pschologist, 38, 263-277.
    Siegler, R.S., & Richards, D. (1979) Development of time,
    speed, and distance concepts. Developmental
    Psychology,15, 288-298.
    Siegler, R.S., & Vago, S. (1978). The development of a
    proportionality concept: judging relative fullness.
    Journal of Experimental Child Psychology, 25,371-395.
    Siegler, R.S. (1985). Encoding and development of problem
    solving In S.F. Chipman, J.W. Segal, & R. Glasser (Eds.)
    Thinking and learning skills. volume 2: Research and
    open questions. N.J.: Lawrence Erlbaum Associates,
    Publishers, 161-185.
    Siegler, R.S. (1986). Children's thinking. Englewood Cliffs,
    N.J.: Prentice-Hall.
    Siegler, R.S. (1989). How children discover new strategies.
    Lawrence Erlbaum Associates, Inc., N.J.: Hillsdale.
    Simon, H.A. (1980). Problem solving and education. In D.T.
    Tuma & F. Reif (Eds.), Problem solving and education:
    Issues in teaching and research. Hillsdale, NJ: Erlbaum.
    Smith,E.L.,Blakeslee,T.D.,& Anderson,C.W.(1993).Teaching strategies associated with conceptual change learning in sience. Journal of Research in Science Teaching , 30(2), 111-126.
    Stepans,J.I.,(1988) What are we learning from children about teaching and learning. Teaching & Learning Journal of Natural Inquiry,2(2),9-18.
    Stepans,J.I., Dyche S.,& Beiswenger,R.(1988) The effect of two instructional models in bringing about a conceptual prospective elementary teacher. Science Education , 72(2),185-195.
    Strike, K.A. & Posner, G.J. (1985). A conceptual change view of learning and understanding. In Cognitive Structure and Conceptual Change, Leo H.T. West & A. Leon Pines (Eds.). New York: Academic, 211-231.
    Tobin,K.,& Tippins,D.(1993). The practice of constructivism
    in science education. Washington DC. AAAS Press.
    Tomasini,N.G.,Gandolfi,E.,& Balandi,B.P.(1990). Teaching strategies and conceptual change :Sinking and floating at elementary school level.(ERIC Document Reproduction Service,No.ED 326428).
    Trumper,R.(1991).Being Constructive:An Alternative Approach to the Teaching of the Energy Concept-part two.International Journal of Science Education,
    13 (1),1-10.
    Von Glasersfield,E.(1989b). Learning as a constructive
    activity. In P. Murphy,& B.Moon. Developments in
    learning and assessment. London: Hodder & Stoughton.
    West, L. H. T. & Pines, A. L. (1985). Cognitive Structure and
    Conceptual Change. New York: Academic Press.
    Wheatley, G. H. (1991). Constructivist Perspectives on
    Science and Mathematics Learning, Science Education,
    75(1), 9-21.
    Wilkening, F. (1981). Integrating velocity, time, and distance
    information: a developmental study. Cognitive
    Psychology, 13 ,231-247.
    Wilkening, F. (1982). Children's knowledge about time,
    distance, and velocity interrelations. In W.J. Friedman
    (Ed.), The developmental psychology of time. New York:
    Academic Press.
    Wilkening, F. & Anderson, N.H. (1982). Comparison of two
    rule-assessment methodologies for studying cognitive
    development and knowledge structure. Psychological
    Bulletine, 92(1), 215-237.
    Wittrock, M. C. (1974a). A Generative Model of Mathematics
    Learning. Journal of Research in Mathematics Education,
    5, 181-196.
    Wittrock, M. C. (1974b). Learning as a Generative Process.
    Education Psychology, 11, 87-95.
    Wittrock, M. C. (1978). The Cognitive Movement in
    Instruction. Educational Psychologist, 13, 15-30.
    Wittrock, M. C. (1985). Learning Science by Generating New
    Conceptions from Old Ideas. In West, L. H. T. and Pines,
    A. L. (Eds.), Cognitive structure and Conceptual Change. New York: Academic Press, 259-266.
    Wittrock, M. C. (1986). Student*s Thought Process. In M. C.
    Wittrock (Eds.), Handbook of Research on Teaching (3rd
    ed., pp.297-314). New York: Macmillan.

    下載圖示
    QR CODE