研究生: |
林永來 Yung-Lai Lin |
---|---|
論文名稱: |
Hilbert-Kunz Functions of Binomial Hypersurfaces |
指導教授: |
洪有情
Hung, Yu-Ching |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
中文關鍵詞: | Hilbert-Kunz |
論文種類: | 學術論文 |
相關次數: | 點閱:148 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
缺
In this article, by making use of Gr¨obner basis, we determine the Hilbert-Kunz function
of binomial hypersurfaces of the form
f := Xa1
1 · · ·Xar
r Y b1
1 · · · Y bs
s + Y c1
1 · · · Y cs
s Zd1
1 · · ·Zdt
t
which is
HKR(n) = p(r+s+t−1)n +
r+s+t−2 Xk=0
fk(n)pkn
for n 0, where is a rational number and fk(n) is an eventually periodic function of n
for each k. Moreover, we also determine the leading coecient .
i
[1] Adams, W. W. and Loustaunau, P. : An Introduction to Gr¨obner Bases. American Mathematical
Society (1994)
[2] Buchweitz, R.O. and Chen, Q. : Hilbert-Kunz functions of cubic curves and surfaces.
Journal of Algebra 197, 246–267 (1997)
[3] Chiang, L. and Hung, Y.C. : On Hilbert-Kunz function and representation ring. Bull. Inst.
Math. Acad. Sinica Vol26, No1, 1–32 (1998)
[4] Chiang, L. and Hung, Y.C. : On Hilbert-Kunz Functions of Some Hypersurfaces. Journal
of Algebra 199, 499–527 (1998)
[5] Conca, A. : Hilbert-Kunz function of monomial ideals and binomial hypersurfaces.
Manuscripta Math. 90, 287–300 (1996)
[6] Cox, D., Little, J. and O’Shea, D. : Idaels, Varieties, and Algorithms. Springer-Verlag New
York, Inc. (1992)
[7] Han, C. and Monsky, P. : Some surprising Hilbert-Kunz functions. Math. Z. 214, 119–135
(1993)
[8] Hsieh, H. H. : On Hilbert-Kunz Function of Binomial Hypersurfaces. Master’s Thesis,
National Taiwan Normal University (1997)
[9] Kunz, E. : Characterizations of regular local rings of characteristic p. Am. J. Math. 41,
772–784 (1969)
[10] Kunz, E. : On Noetherian rings of characteristic p. Am. J. Math. 98, 999–1013 (1976)
[11] Monsky, P. : The Hilbert-Kunz function. Math. Ann. 263, 43–49 (1983)
[12] Monsky, P. : The Hilbert-Kunz functions of a characteristic 2 cubic. Journal of Algebra
197, 268–277 (1997)
[13] Pauer, F. and Pfeifhofer, M. : The Theory of Gr¨obner Bases. L’Enseignement Mathematique,
t.34, p.215–232 (1988)
[14] Wolmer, V. V. and Eisenbud, D. : Computational methods in commutative algebra and
algebraic geometry. Springer-Verlag Berlin Heidelberg New York (1998)
52