簡易檢索 / 詳目顯示

研究生: 楊進勝
Chin-Sern Yong
論文名稱: 果蠅的TBP功能缺失所導致的細胞凋亡是透過氧化壓力及p53的活化
Loss of TBP function causes apoptosis due to oxidative stress and p53 activation in Drosophila melanogaster
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 44
中文關鍵詞: TBPP53氧化壓力Prx2540-2細胞凋亡
英文關鍵詞: dTbp, P53, oxidative stress, Prx2540-2, apoptosis
論文種類: 學術論文
相關次數: 點閱:186下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前研究發現TATA box binding protein gene (TBP) 失去功能,會導致老鼠和斑馬魚早期發育停止及細胞凋亡。TBP如何調控動物發育及細胞凋亡的機制目前並不很清楚的,本論文的主要目的在於研究TBP導致細胞凋亡的性狀在果蠅是否保守,並了解其調控機制,我們發現TBP突變果蠅僅發育至胚胎晚期,且細胞死亡數大量增加。進一步分析TBP缺失細胞即為死亡細胞,顯見TBP對細胞凋亡的調控為自發性的,遺傳分析結果顯示,表現負顯性P53或DIAP1可抑制TBP缺失引起的細胞凋亡,反之大量表視TBP則可抑制P53引起之細胞死亡,顯示TBP為P53引發細胞凋亡作用路徑的成員;此外相較野生型,TBP突變果蠅的總蛋白質量和總核酸量並沒有顯著的減少,顯示TBP可能僅介由影響少數特定基因的表現造成細胞死亡,利用基因微陣列分析,TBP突變果蠅其Prx2540-2基因表現大量降低,Prx蛋白具水解過氧化氫(H2O2)活性,為細胞抵抗氧化壓力之重要成員。實驗發現TBP突變果蠅其過氧化氫濃度相較野生型果蠅為高,且餵食抗氧化劑可有效增長TBP突變株果蠅的生存壽命。綜言之,我們証實TBP功能缺失可籍由活化P53及氧化壓力造成細胞死亡。

    Previous studies revealed that loss of TBP function causes developmental arrest and apoptosis in mice and zebrafish. How TBP regulates animal development and apoptosis is currently elusive. The main objectives of this study are to test whether function of Drosophila TBP (dTbp) in regulating apoptosis is conserved, and to dissect the mechanisms by which dTbp regulates apoptotic pathway. We find that homozygous dTbp mutant flies die during late embryogenesis, and ectopic cell death was observed in the dying embryos. Somatic clone analysis reveals that loss of dTbp causes apoptosis in a cell autonomous manner. In genetic analyses, we find that ectopic expression of dominant negative P53 (P53DN) or DIAP1 can suppress deactivated dTbp induced cell death, indicating dTbp is a member of P53 mediated apoptotic pathway. We also find that total protein and ribonucleic acid are not reduced significantly in dTbp mutant flies, suggesting that dTbp might affect only a few genes to regulate apoptosis. Through gene profiling experiments, we find that the expression of Prx2540-2 is greatly reduced in dTbp mutants. Prx normally reduces hydrogen peroxide, and can protect cells from oxidative stress. In our preliminary studies, we find that H2O2 is higher in dTbp mutant flies, and antioxidants can extend the lifespan of dTbp mutants. In sum, our result suggests that activation of P53 and oxidative stress contribute to deactivated dTbp induced apoptosis.

    中文摘要….……………………………………………………………...2 Abstract………………………………………………………………….3 Introduction……………………………………………………………..4 Objectives of this study…………………………………………………8 Materials and Methods …….…………………………………………..9 Results …………………………………………………………….........14 Discussion………………………………………………………………20 Acknowledgements…….………………………………………………23 References…………...………………………………………………….24 Figures………………………………………………………………….30

    References

    Abrams, J. M., White, K., Fessler, LI., Steller, H. 1993. Programmed cell death during Drosophila embryogenesis. Development. 117, 29-43.

    Brand, A. H., Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-15.

    Chou, T. B., Perrimon, N. 1992. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 131(3): 643-53.

    Dantonel, J. C., Wurtz, J. M., Poch, O., Moras, D., Tora, L. 1999. The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci. 24(9):335-9. Review.

    Davidson, I. 2003. The genetics of TBP and TBP-related factors. Trends Biochem. Sci. 28, 391–398.

    Hernandez, N. 1993. TBP, a universal eukaryotic transcription factor? Genes Dev. 7(7B):1291-308. Review.

    Jamie, M. K., Brian, E. S. 2003. GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet. Mol. Res. 2 (1): 43-47.

    Jin, S., Martinek, S., Joo, W. S., Wortman, J. R., Mirkovic, N., Sali, A., Yandell, M. D., Pavletich, N. P., Young, M. W., Levine, A. J. 2000. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci U S A. 97(13):7301-6.

    Lee, Y. S., Carthew, R. W. 2003. Making a better RNAi vector for Drosophila: use of intron spacers. Methods. 30(4):322-9.

    Lescure, A., Lutz, Y., Eberhard, D., Jacq, X., Krol, A., Grummt, I., Davidson, I., Chambon, P., Tora, L. 1994. The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 13(5):1166-75.

    Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell. 88(3):323-31.

    Li, L. Q., Zhang, Y. G., Chen, C. L. 2013. Anti-apoptotic role of peroxiredoxin III in cervical cancer cells. J Cell Biochem. 10.1002/jcb.24582.

    Lin, B. R., Yu, C. J., Chen, W. C., Lee, H. S., Chang, H. M., Lee, Y. C., Chien, C. T., Chen, C. F. 2009. Green tea extract supplement reduces d-galactosamineinduced acute liver injury by inhibition of apoptotic and proinflammatory signaling. J Biomed Sci. 16:35.

    Martin, D. W., Muñoz, R. M., Subler, M. A., Deb, S. 1993. p53 binds to the TATA-binding protein-TATA complex. J Biol Chem. 268(18):13062-7.

    Martianov, I., Viville, S., Davidson, I. 2002. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 298(5595):1036-9.

    Matsushima, S., Ide, T., Yamato, M., Matsusaka, H., Hattori, F., Ikeuchi, M., Kubota, T., Sunagawa, K., Hasegawa, Y., Kurihara, T., Oikawa, S., Kinugawa, S., Tsutsui, H. 2006. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 113:1779–1786.

    Orphanides, G., Lagrange, T., Reinberg, D. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683.

    Phalen, T. J., Weirather, K., Deming, P. B., Anathy, V., Howe, A. K., van der Vliet, A., Jonsson, T. J., Poole, L. B. and Heintz, N. H. 2006. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175, 779-789.

    Pedruzzi, E., Guichard, C., Ollivier, V., Driss, F., Fay, M., Prunet, C., Marie, J. C., Pouzet, C., Samadi, M., Elbim, C. et al. 2004. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol. Cell. Biol. 24, 10703–10717.

    Sandberg, E. M. and Sayeski, P. P. 2004. Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J. Biol. Chem. 279, 34547–34552.

    Song, H. J., Lee, T. S., Jeong, J. H., Min, Y. S., Shin, C. Y. and Sohn, U. D. 2005. Hydrogen peroxide-induced extracellular signal-regulated kinase activation in cultured feline ileal smooth muscle cells. J. Pharmacol. Exp. Ther. 312, 391–398.

    Tavender, T. J., Bulleid, N. J. 2010. Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. Journal of Cell Science 123, 2672-2679.

    TenHarmsel, A., Biggin, M. D. 1995. Bending DNA can repress a eukaryotic basal promoter and inhibit TFIID binding. Mol Cell Biol. 15(10):5492-8.

    Thomas, M. C., Chiang, C. M. 2006. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178.

    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84.

    Woo, H. A., Chae, H. Z., Hwang, S. C., Yang, K. S., Kang, S. W., Kim, K. and Rhee, S. G. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656.

    Yu, H. J., Lin, B. R., Lee, H. S., Shun, C. T., Yang, C. C., Lai, T. Y., Chien, C. T., Hsu, S. M. 2005. Sympathetic vesicovascular reflex induced by acute urinary retention evokes proinflammatory and proapoptotic injury in rat livers. Am J Physiol Renal Physiol. 288:F1005e14.

    Zhou, Q., Boyer, T. G., Berk, A. J. 1993. Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev. 7(2):180-7.

    Zhou, Q., Berk, A. J. 1995. The yeast TATA-binding protein (TBP) core domain assembles with human TBP-associated factors into a functional TFIID complex. Mol Cell Biol. 15(1):534-9.

    下載圖示
    QR CODE