簡易檢索 / 詳目顯示

研究生: 廖宏銘
Liao, Hung-Min
論文名稱: 橢圓曲線的二次扭變
Quadratic Twists of Elliptic Curves
指導教授: 紀文鎮
Chi, Wen-Chen
陳其誠
Tan, Ki-Seng
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 48
中文關鍵詞: 橢圓曲線二次扭變
英文關鍵詞: Elliptic Curve, Quadratic Twist, 2-Selmer Group
論文種類: 學術論文
相關次數: 點閱:221下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 關於橢圓曲線的二次扭變,可以追溯到古希臘的一個數論問題,現在我們稱為congruent number problem。而在Ono的論文中提及一個猜想,給定一個橢圓曲線 E 會有無窮多個質數p,使得其對p的二次扭變的秩為零,同時也會有無窮多個質數q,使得其對q的二次扭變的秩為正。在這篇論文中,我們證明了,對於某類橢圓曲線,這個猜想是正確的,並且給出一個方法找出滿足其條件的質數。

    Let E be an elliptic curve defined over Q, and for each square-free rational integer d, let E_d denote the the quadratic twist of E by d (in brief, the d-twist). The
    question concerning the rank rk(Ed(Q)) of the Mordell-Weil group E_d(Q) (the rank of E_d over Q) can be traced back to the ancient Greek congruent number problem for which the involved elliptic curve is nowadays called the congruent curve defined by
    y^2 = x^3-x:
    A square free integer d is a congruent number if and only if the d-twist of the congruent curve has positive rank over Q. There is a conjecture given in the Ono's paper. If E/Q is an elliptic curve, then there are infinitely many primes p for which E_p has rank 0 over Q, and there are infinitely many primes l for which E_l has positive
    rank over Q.
    The main aim of this thesis is to verify this conjecture for a large family of elliptic curves by giving an algorithm to find the suitable primes. For the technical
    reason, we need to assume that the subgroup of 2-torsion points, E[2], is contained in E(Q), or equivalently, the defining equation of E can be written as
    y2 = x(x - a)(x - b); a, b \in Z; 0 < a < b; and (a,b) square free:
    Most of the previous works compute the rank of E_d over Q by computing Sel_2(E_d/Q). Our approach is slightly different, we consider L =Q(\sqrt{d}) and determine the rank of E_d over Q by computing the rank of E over L
    and then using the equality:
    rk(E(L)) = rk(E(Q)) + rk(E_d(Q)):
    The advantage of doing so is that the Selmer group Sel_2(E/L) becomes controllable if the extension L/Q satisfies certain condition that can be easily formulated via local data.

    Chapter I. Introduction 5 Chapter II. Preliminary Results 11 1. The Cassels-Tate Pairing 11 2. The 2-division Points 13 3. The Local Pairing 14 4. Computing Sel2(E/K) 18 5. The Global Duality 20 Chapter III. The Independent Field Extensions 23 1. The Norm Map 23 2. The Map n_{L/Q} 24 3. The Selmer Groups 25 4. The First Main Result 26 Chapter IV. The Local Symbols 29 1. The Archimedean Place 29 2. The Split Multiplicative Places 29 3. The Non-Split Multiplicative Places 30 4. The Potential Good Additive Places 31 5. The map s 32 6. The d-Twist of E for d = p or d = pq 33 7. An Example 34 Chapter V. The Proof of the Main Theorem 39 1. The Injectivity of s(q) 39 2. The Non-surjectivity of s(q) 39 3. The examples of the Congruent Curve 43 Bibliography 47

    Bibliography
    [Bir69] B. J. Birch, Diophantine analysis and modular functions, in Algebraic Geometry (Internat.
    Colloq., Tata Inst. Fund. Res., Bombay, 1968), 35-42, Oxford Univ. Press, London, 1969.
    [Bir70] -, Elliptic curves and modular functions, In Symposia Mathematica, Vol. IV (INDAM,
    Rome, 1968/69), 27-32 Academic Press, London, 1970.
    [CaE56] H. Cartan, S. Eilenberg Homological Algebra, Princenton University Press, Princeton,
    New Jersey, 1956.
    [CLT05] W.-C. Chi, K.F. Lai and K.-S. Tan, Integral points on elliptic curves, Pac. J. Math. 222,
    No. 2 (2005), 237-252
    [CKRS] J.B. Conrey, J.P. Keating, M.O. Rubinstein, N.C. Snaith On the frequency of vanishing
    of quadratic twists of modular L-functions, Number theory for the millennium, I (Urbana, IL,
    2000), 301V315, A K Peters, Natick, MA, 2002.
    [Elk94] N. Elkies, Heegner point computations, Algorithmic Number Theory (ANTS-1), Lect. Notes
    in Comp. Sci. 877, Springer-Verlag, Berlin, 1994, 122-133.
    [ElkWeb] -, http://www.math.harvard.edu/ elkies/compnt.html
    [Gol79] D. Goldfeld, Conjectures on elliptic curves over quadratic elds, Lecture Notes in Math.
    751, Springer-Verlag, 1979, 108-119.
    [GouM91] F. Gouv^ ea, B. Mazur, The square-free sieve and the rank of elliptic curves J. Amer.
    Math. Soc. 4, 1991, no.1, 1-23.
    [Hea94] D.R. Heath-Brown, The size of Selmer groups for the congruent number problem. II Invent.
    Math. 118, 1994, no.2, 331-370.
    [Hee52] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56,1952, 227-253.
    [Mil86] J.S. Milne, Arithmetic Duality Theorems, Academic Press, New York, 1986. , 1952, 227-
    253.
    [M-M94 ] Mai, L. and Murty, R., A note on quadratic twists of an elliptic curve, CRM Proceedings
    and Lecture Notes, 4, 1994, 121-124.
    [Mon90] Paul Monsky. Mock heegner points and congruent numbers Mathematische Zeitschrift,
    1990, 204:45-67.
    [Kob84] Neal Koblitz, Introduction to elliptic curves and modular forms, Graudate Texts in Math.
    97, Springer, New York, 1984.
    [Ono97] K. Ono, Twists of Elliptic Curves, Compositio Mathematica 106, 1997, 349-360.
    [OS98] K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions Invent. Math.
    134, 1998, 651-660.
    [Rei75] Reiner, I. Maximal Orders, Academic Press, New York, 1975.
    [RubS01] K. Rubin, A. Silverberg, Rank frequencies for quadratic twists of elliptic curves Exper.
    Math. 10, 2001, no.4, 559-569.
    [RubS02] -, Ranks of elliptic curves Bull. Amer. Math Soc. 39. 2002, 455-474.
    [Ser79] J.-P. Serre, Local Fields, Spronger-Verlag, New York, 1979.
    [Sht72] S. Shatz, Pro nite groups, Arithmetic, and Geometry, Annals of Math. Studies 67, Prince-
    ton University Press, 1972.
    [Sil86] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer,
    New York, 1986.
    [Sil94] -, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math. 151,
    Springer, New York, 1994.
    [SteT95] C.L. Stewart, J. Top, On ranks of twists of elliptic curves and power-free values of binary
    forms, J. Amer. Math. Soc. 8, 1967, no.4, 943-973.
    [Tat57/58] J. Tate, WC-groups over p-adic elds, Seminaire Bourbaki, Expose 156, 13pp.
    [Tat62] J. Tate, Duality theorems in Galois cohomology over number elds, Proc. Intern. Congress
    Math. Stockholm, 234-241.
    [Tat67] J. Tate, Global class eld theory, in Algebraic Number Theory, J.W.S. Cassels and A.
    Frohlich, eds., Acdemic Press, 1967, 162-203. Proc. Intern. Congress Math. Stockholm, 234-
    241.
    [Tun83] J.B. Tunnell. A classical diophantine problem and modular forms of weight 3=2 Inventiones
    Mathematicae, 1983, 72:323-334.

    下載圖示
    QR CODE